Volume 6 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Liu Yan, Yang Xiaobin, Wang Yang, Pei Yanyu. Experimental study on the displacement evolution of rock interface friction slip based on crack[J]. Journal of Mining Science and Technology, 2021, 6(4): 438-444. doi: 10.19606/j.cnki.jmst.2021.04.008
Citation: Liu Yan, Yang Xiaobin, Wang Yang, Pei Yanyu. Experimental study on the displacement evolution of rock interface friction slip based on crack[J]. Journal of Mining Science and Technology, 2021, 6(4): 438-444. doi: 10.19606/j.cnki.jmst.2021.04.008

Experimental study on the displacement evolution of rock interface friction slip based on crack

doi: 10.19606/j.cnki.jmst.2021.04.008
  • Received Date: 2020-12-17
  • Rev Recd Date: 2021-03-15
  • Publish Date: 2021-08-01
  • To study the further evolution characteristics of the fracture plane or structural plane after rock failure, the granite was chosen and prepared as double penetration crack samples, and the friction sliding tests were conducted using twin-shear model.During the tests, the CCD camera was used to record the speckle images, and the digital speckle method was used to analyze the evolution characteristics of horizontal displacement field, vertical displacement and horizontal displacement in the process of friction sliding.The results show that: ① The major role in displacement evolution has changed from confining pressure to a combination of confining pressure and shear stress at the stage of slow growth in shear stress.The displacement evolution is dominated by shear stress at the stage of linear growth in shear stress.The increase and decrease of interface occlusal degree and horizontal alternate displacement can be used as precursors of rock interface friction slip.② The appearance and disappearance of the flow around the horizontal displacement field are the precursors of the local and global slip of the specimen, respectively.③ The relationship between confining pressure and shear stress is characterized by the central contour inclination in the nephogram of displacement field, so it can also be used as precursors of partial and global slip of the specimen.
  • loading
  • [1]
    王剑波. 页岩储层缝面摩擦滑动特性研究[D]. 北京: 中国石油大学(北京), 2016.
    [2]
    崔崧, 黄宝宗, 张凤鹏. 准脆性材料的弹塑性损伤耦合模型[J]. 岩石力学与工程学报, 2004, 23(19): 3221-3225. doi: 10.3321/j.issn:1000-6915.2004.19.002

    Cui Song, Huang Baozong, Zhang Fengpeng. Coupled elastoplastic-damage model for quasi-brittle solids[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(19): 3221-3225. doi: 10.3321/j.issn:1000-6915.2004.19.002
    [3]
    陈颙. 地壳岩石的力学性能: 理论基础与实验方法[M]. 北京: 北京地震出版社, 1988.
    [4]
    陈颙, 黄庭芳. 岩石物理学[M]. 北京: 北京大学出版社, 2001.
    [5]
    Jaeger J C, Cook N G W, Zimmerman R W. Fundamentals of rock mechanics[M]. 4th ed. New York: Blackwell Publishing, 2007: 65-79.
    [6]
    Wang W B. Micromechanics of rock friction and wear processes: A theoretical and experimental study[D]. New York : Columbia University, 1994.
    [7]
    宋义敏, 张悦, 许海亮, 等. 岩石摩擦滑动位移场时空演化特征研究[J]. 岩石力学与工程学报, 2018, 37(8): 1777-1784. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201808001.htm

    Song Yimin, Zhang Yue, Xu Hailiang, et al. Temporal and spatial characteristics of displacement field of rock friction and sliding[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (8): 1777-1784. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201808001.htm
    [8]
    宋义敏, 邓琳琳, 吕祥锋, 等. 岩石摩擦滑动变形演化及声发射特征研究[J]. 岩土力学, 2019, 40(8): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908003.htm

    Song Yimin, Deng Linlin, Lü Xiangfeng, et al. Study on the acoustic emission characteristics and deformation evolution during rock frictional sliding[J]. Rock and Soil Mechanics, 2019, 40 (8): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908003.htm
    [9]
    韩文梅, 康天合. 微凸体对抛光岩石表面静摩擦系数影响试验研究[J]. 岩土力学, 2013, 34(3): 674-678. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201303011.htm

    Han Wenmei, Kang Tianhe. Experimental study of influence of asperity on static friction coefficient for polished rock surface[J]. Rock and Soil Mechanics, 2013, 34 (3): 674-678. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201303011.htm
    [10]
    韩文梅, 康天合, 李建军. 表面形貌对岩石摩擦滑动本构参数影响研究[J]. 岩石力学与工程学报, 2013, 32(8): 1632-1639. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308017.htm

    Han Wenmei, Kang Tianhe, Li Jianjun. Influence of surface topography on constitutive parameter of rock frictional sliding[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1632-1639. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308017.htm
    [11]
    刘善军, 吴立新, 王金庄, 等. 遥感-岩石力学(Ⅵ): 岩石摩擦滑移特征及其影响因素分析[J]. 岩石力学与工程学报, 2004, 23(8): 1247-1251. doi: 10.3321/j.issn:1000-6915.2004.08.003

    Liu Shanjun, Wu Lixin, Wang Jinzhuang, et al. Remote sensing-rock mechanics(Ⅵ)—features of rock friction-sliding and analysis on its influence factors[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(8): 1247-1251. doi: 10.3321/j.issn:1000-6915.2004.08.003
    [12]
    李清淼. 加卸载围压条件下岩石峰后力学特性试验研究[D]. 重庆: 重庆大学, 2015.
    [13]
    昝月稳, 俞茂宏, 吉嶺充俊. 一种适合于岩石材料的双剪模型[J]. 工程地质学报, 2004, 12(3): 274-279. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200403009.htm

    Zan Yuewen, Yu Maohong, Ji Lingchongjun. A twin-shear model for rock materials[J]. Journal of Engineering Geology, 2004, 12 (3): 274-279. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200403009.htm
    [14]
    王海军, 任旭华, 陶冉冉, 等. 基于摩擦滑动的低应力区岩石变形记忆性机理[J]. 中南大学学报: 自然科学版, 2012, 43(11): 4464-4471. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201211046.htm

    Wang Haijun, Ren Xuhua, Tao Ranran, et al. Mechanism of rock deformation memory effect in low stress region based on frictional sliding[J]. Journal of Central South University: Science and Technology, 2012, 43 (11): 4464-4471. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201211046.htm
    [15]
    Lockner D A, Byerlee J D. Acoustic emission and creep in rock at high confining pressure and differential stress[J]. Bulletin of the Seismological Society of America, 1977, 67(2): 247-258. http://www.sciencedirect.com/science/article/pii/0148906278910045
    [16]
    王建明, 陈忠辉, 周子涵, 等. 不同卸荷速率下节理岩桥变形破坏及裂隙扩展演化试验研究[J]. 矿业科学学报, 2020, 5(4): 382-392. http://kykxxb.cumtb.edu.cn/article/id/302

    Wang Jianming, Chen Zhonghui, Zhou Zihan, et al. Experimental study on deformation failure and crack propagation evolvement of jointed rock bridge under different unloading rates[J]. Journal of Mining Science and Technology, 2020, 5(4): 382-392. http://kykxxb.cumtb.edu.cn/article/id/302
    [17]
    张凌凡, 陈忠辉, 秦凡, 等. 岩石断裂混合矩张量反演与数值分析[J]. 矿业科学学报, 2019, 4(5): 394-402. http://kykxxb.cumtb.edu.cn/article/id/238

    Zhang Lingfan, Chen Zhonghui, Qin Fan, et al. Hybrid moment tensor inversion and numerical analysis of rock fracture[J]. Journal of Mining Science and Technology, 2019, 4(5): 394-402. http://kykxxb.cumtb.edu.cn/article/id/238
    [18]
    Sutton M A. Digital image correlation for shape and deformation measurements[M]. New York: Springer Handbook of Experimental Solid Mechanics, 2008: 565-598.
    [19]
    宋义敏, 张悦, 许海亮, 等. 基于非均匀特征的岩石蠕滑与黏滑变形演化研究[J]. 岩土力学, 2020, 41(2): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002002.htm

    Song Yimin, Zhang Yue, Xu Hailiang, et al. Study on creep-slip and stick-slip deformation evolution of rock based on non-uniform characteristics[J]. Rock and Soil Mechanics, 2020, 41 (2): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002002.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (451) PDF downloads(22) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return