Volume 6 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Zhu Hongqing, He Xin, Huo Yujia, Xie Yuyi, Wang Wei, Fang Shuhao. Construction and optimization of lignite molecular structure model[J]. Journal of Mining Science and Technology, 2021, 6(4): 429-437. doi: 10.19606/j.cnki.jmst.2021.04.007
Citation: Zhu Hongqing, He Xin, Huo Yujia, Xie Yuyi, Wang Wei, Fang Shuhao. Construction and optimization of lignite molecular structure model[J]. Journal of Mining Science and Technology, 2021, 6(4): 429-437. doi: 10.19606/j.cnki.jmst.2021.04.007

Construction and optimization of lignite molecular structure model

doi: 10.19606/j.cnki.jmst.2021.04.007
  • Received Date: 2020-12-17
  • Rev Recd Date: 2021-03-15
  • Publish Date: 2021-08-01
  • In view of the current situation that there are many but no uniform coal molecular modeling methods, this paper explores the structuve of lignite macromolecules and optimizes them from a microscopic perspective by selecting physical methods that have less impact on molecular structure.A relatively simple coal macromolecule modeling method was put forward.Based on the experimental methods of elemental analysis, 13C-NMR and XPS, molecular dynamics simulation software method was used to analyze and study lignite and build molecular structure models.The results show that the aromatic structure of lignite macromolecules is mostly pentaphenyl.The fat carbon structure is mostly methylene and methine, and the alkane chain is mostly cycloalkanes.Oxygen atoms are mostly ether bond oxygen, followed by carboxyl oxygen and carbonyl oxygen.Nitrogen atom exist in the form of Pyridinic nitrogen N-6.After the optimization, the structure of the coal molecular model is more compact and the energy is obviously reduced.As the main component of the non-bonding potential energy and the main factor to maintain the stability of the coal molecular structure, the van der Waals potential energy has the most obvious change.In order to construct coal molecular cell, periodic boundary conditions were added.According to the energy variation, the cell density was 1.2 g/cm3 and the total energy was 1 140.624 kJ/mol, which was basically consistent with the actual situation and verified the effectiveness of the modeling method.This study provides a method for the direct understanding of the macromolecular structure of coal, and is of great significance for the mechanism research and prevention of coal and gas outburst, coal spontaneous combustion and other disasters.
  • loading
  • [1]
    中国煤炭工业协会. 中华人民共和国推荐性国家标准: 中国煤炭分类GB/T 5751—2009[S]. 北京: 中国标准出版社, 2010.
    [2]
    林雄超, 王彩红, 田斌, 等. 脱灰对两种烟煤半焦碳结构及CO2气化反应性的影响[J]. 中国矿业大学学报, 2013, 42(6): 1040-1046. doi: 10.3969/j.issn.1000-1964.2013.06.023

    Lin Xiongchao, Wang Caihong, Tian Bin, et al. Effects of de-ashing on the micro-structural transformation and CO2 reactivity of two Chinese bituminous coal chars[J]. Journal of China University of Mining & Technology, 2013, 42(6): 1040-1046. doi: 10.3969/j.issn.1000-1964.2013.06.023
    [3]
    孙成功, 李保庆, Colin E·Snape. 煤中有机硫形态结构和热解过程硫变迁特性的研究[J]. 燃料化学学报, 1997, 25(4): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-RLHX704.013.htm

    Sun Chenggong, Li Baoqing, Colin E·Snape. Characteri-zation of organic sulfur forms in some Chinese coals by high pressure tpr and sulphur transfer during hydropyrolysis[J]. Journal of Fuel Chemistry and Technology, 1997, 25(4): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-RLHX704.013.htm
    [4]
    戴中蜀, 郑昀辉. 低煤化度煤经低温热解后各基团变化的研究[J]. 煤炭转化, 1997, 20(1): 54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-MTZH199701009.htm

    Dai Zhongshu, Zheng Yunhui. The study of groups variation of low rank coal during low temperature pyrolysis by FTIR spectrography[J]. Coal Conversion, 1997, 20(1): 54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-MTZH199701009.htm
    [5]
    吴国光, 王祖讷. 低阶煤的热重-傅里叶变换红外光谱的研究[J]. 中国矿业大学学报, 1998, 27(2): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD802.016.htm

    Wu Guoguang, Wang Zuna. Research on TG-FTIR of low rank coals[J]. Journal of China University of Mining & Technology, 1998, 27(2): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD802.016.htm
    [6]
    何满潮, 韩宗芳, 杨华. 不同温度下高岭石变形及破坏机理的分子动力学模拟[J]. 矿业科学学报, 2019, 4(1): 8-16. http://kykxxb.cumtb.edu.cn/article/id/191

    He Manchao, Han Zongfang, Yang Hua. Molecular dynamics simulation of deformation and failure mechanism of kaolinite at different temperatures[J]. Journal of Mining Science and Technology, 2019, 4(1): 8-16. http://kykxxb.cumtb.edu.cn/article/id/191
    [7]
    Chermin H A G, Van K D W. Chemical structure and properties of coal. XVⅡ-A mathematical model of coal pyrolysis[J]. Fuel, 1957, 36(1): 85-104. http://www.researchgate.net/publication/284060154_Chemical_structure_and_properties_of_coal-XVII_A_mathematical_model_of_coal_pyrolysis
    [8]
    Given P H. The distribution of hydrogen in coals and its relation to coal structure[J]. Fuel, 1960, 39(2): 147.
    [9]
    Wiser W H. Reported in division of fuel chemistry[J]. Preprints, 1971, 20(1): 122.
    [10]
    Shinn J H. From coal to single-stage and two-stage products: a reactive model of coal structure[J]. Fuel, 1984, 63(9): 1187-1196. doi: 10.1016/0016-2361(84)90422-8
    [11]
    Lian Lulu, Qin Zhihong, Li Chunsheng, et al. Molecular model construction of the dense medium component scaffold in coal for molecular aggregate simulation[J]. ACS Omega, 2020, 5(22): 13375-13383. doi: 10.1021/acsomega.0c01575
    [12]
    Wu Dun, Zhang Hui, Hu Guangqing, et al. Fine characterization of the macromolecular structure of huainan coal using XRD, FTIR, 13C-CP/MAS NMR, SEM, and AFM techniques[J]. Molecules, 2020, 25(11): 2661. doi: 10.3390/molecules25112661
    [13]
    洪迪昆. 准东煤热解及富氧燃烧的反应分子动力学研究[D]. 武汉: 华中科技大学, 2018.
    [14]
    魏帅, 严国超, 张志强, 等. 晋城无烟煤的分子结构特征分析[J]. 煤炭学报, 2018, 43(2): 555-562. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201802031.htm

    Wei Shuai, Yan Guochao, Zhang Zhiqiang, et al. Molecular structure analysis of Jincheng anthracite coal[J]. Journal of China Coal Society, 2018, 43(2): 555-562. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201802031.htm
    [15]
    Wu Siyuan, Jin Zhixin, Deng Cunbao. Molecular simulation of coal-fired plant flue gas competitive adsorption and diffusion on coal[J]. Fuel, 2019, 239: 97-96. doi: 10.1016/j.fuel.2018.10.146
    [16]
    聂尧, 赵越超. 煤中多组分混合气体竞争吸附研究现状及工程应用[J]. 矿业科学学报, 2020, 5(1): 45-57. http://kykxxb.cumtb.edu.cn/article/id/264

    Nie Yao, Zhao Yuechao. Research status and engineering application of competitive adsorption of multicomponent mixed gases in coal[J]. Journal of Mining Science and Technology, 2020, 5(1): 45-57. http://kykxxb.cumtb.edu.cn/article/id/264
    [17]
    王擎, 王智超, 贾春霞, 等. 基于固体13C核磁共振技术对油砂沥青质结构的研究[J]. 化工进展, 2014, 33(6): 1392-1396. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201406007.htm

    Wang Qing, Wang Zhichao, Jia Chunxia, et al. Study on structural features of oil sands with solid state 13C NMR[J]. Chemical Industry and Engineering Progress, 2014, 33(6): 1392-1396. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201406007.htm
    [18]
    Solum M S, Pugmire R J, Grant D M, et al. N-15 CPMAS NMR of the argonne premium coals[J]. Energy & Fuels, 1997, 11(2): 491-494. http://www.sciencedirect.com/science/article/pii/S0140670197844219
    [19]
    郑昀辉, 戴中蜀. 用NMR研究低温热处理对低煤化度煤化学组成结构的影响[J]. 煤炭转化, 1997, 20(4): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-MTZH199704009.htm

    Zheng Yunhui, Dai Zhongshu. Using NMR to research the influence of low temperature plyolysis on the chemical component and structure of low rank coal[J]. Coal Conversion, 1997, 20(4): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-MTZH199704009.htm
    [20]
    Song Y, Jiang B, Li J H. Retraction note to: simulations and experimental investigations of the competitive adsorption of CH4 and CO2 on low-rank coal vitrinite[J]. Journal of Molecular Modeling, 2019, 25(6): 178. doi: 10.1007/s00894-019-4074-8
    [21]
    Song Yu, Jiang Bo, Li Wu. Molecular simulation of CH4/CO2/H2O competitive adsorption on low rank coal vitrinite[J]. Physical Chemistry Chemical Physics, 2017, 19(27): 17773-17788. doi: 10.1039/C7CP02993D
    [22]
    Xiang J H, Zeng F G, Liang H Z, et al. Molecular simulation of the CH4/CO2/H2O adsorption onto the molecular structure of coal[J]. Science China Earth Sciences, 2014, 57(8): 1749-1759. doi: 10.1007/s11430-014-4849-9
    [23]
    张洋, 吴兵, 李滕滕, 等. 二次氧化煤燃烧和灭火过程的实验研究[J]. 矿业科学学报, 2020, 5(3): 272-277. http://kykxxb.cumtb.edu.cn/article/id/289

    Zhang Yang, Wu Bing, Li Tengteng, et al. Experimental study on combustion and extinguishing of secondary oxidation coal[J]. Journal of Mining Science and Technology, 2020, 5(3): 272-277. http://kykxxb.cumtb.edu.cn/article/id/289
    [24]
    Takanohashi T, Nakamura K, Terao Y, et al. Computer simulation of solvent swelling of coal molecules: Effect of different solvents[J]. Energy & Fuels, 2000, 14(2): 393-399. doi: 10.1021/ef990147f
    [25]
    Carlson G A. Computer simulation of the molecular structure of bituminous coal[J]. Energy & Fuels, 1992, 6(6): 771-778. doi: 10.1021/ef00036a012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(6)

    Article Metrics

    Article views (801) PDF downloads(148) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return