Volume 6 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Li Jianhong, Wang Yanbin. Fracture characteristics of the 8th member of Shihezi formation in Linxing Area and its influence on fracturing effect[J]. Journal of Mining Science and Technology, 2021, 6(4): 379-388. doi: 10.19606/j.cnki.jmst.2021.04.002
Citation: Li Jianhong, Wang Yanbin. Fracture characteristics of the 8th member of Shihezi formation in Linxing Area and its influence on fracturing effect[J]. Journal of Mining Science and Technology, 2021, 6(4): 379-388. doi: 10.19606/j.cnki.jmst.2021.04.002

Fracture characteristics of the 8th member of Shihezi formation in Linxing Area and its influence on fracturing effect

doi: 10.19606/j.cnki.jmst.2021.04.002
  • Received Date: 2020-09-29
  • Rev Recd Date: 2020-11-10
  • Publish Date: 2021-08-01
  • In order to study the influence of natural fractures on fracturing effect of the 8th member of Shihezi formation in Linxing area, the characteristics of natural fractures in Linxing area are described based on field joint observation and imaging logging data.At the same time, the micro seismic dynamic monitoring method is used to monitor the process of the formation of the fracturing fractures in the 8th member of Shihezi formation in Linxing area.The results show that: ① The natural fractures of 8th member of Shihezi formation in Linxing area are mainly concentrated shear joints with large dip angle, but the total number of natural fractures is less, and the dominant directions of joint are NNW, NWW, NNE and NEE. ② The fracturing effect of crossing control type is the worst, the communication type is better, and the capture type is the best. Smaller approach angle and horizontal principal stress difference are beneficial to the opening of natural fractures. When the level of horizontal principal stress difference in the fracturing area is higher, It's better to adopt a smaller approach angle for fracturing, and this type control of fracturing is communication. When the level of horizontal principal stress difference in the fracturing area is smaller. It's better to adopt a bigger approach angle for fracturing, and this type control of fracturing is capture control type. The results provide a theoretical basis for hydraulic fracturing scheme design of tight sandstone.
  • loading
  • [1]
    寇琳琳, 孙现瑶, 胡耀, 等. 致密砂岩气藏研究思路及勘探方法探讨[J]. 云南化工, 2019, 46(10): 148-149. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHG201910063.htm

    Kou Linlin, Sun Xianyao, Hu Yao, et al. Research thinking and exploration method of tight sand gas[J]. Yunnan Chemical Technology, 2019, 46(10): 148-149. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHG201910063.htm
    [2]
    李宗田, 李凤霞, 黄志文. 水力压裂在油气田勘探开发中的关键作用[J]. 油气地质与采收率, 2010, 17(5): 76-79, 116. doi: 10.3969/j.issn.1009-9603.2010.05.020

    Li Zongtian, Li Fengxia, Huang Zhiwen. Key role of hydraulic fracturing in oil-gas field exploration and development[J]. Petroleum Geology and Recovery Efficiency, 2010, 17(5): 76-79, 116. doi: 10.3969/j.issn.1009-9603.2010.05.020
    [3]
    陈前. 可控中子方位钆示踪裂缝成像评价方法研究[D]. 东营: 中国石油大学(华东), 2018.
    [4]
    赵争光, 秦月霜, 杨瑞召. 地面微地震监测致密砂岩储层水力裂缝[J]. 地球物理学进展, 2014, 29(5): 2136-2139. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201405021.htm

    Zhao Zhengguang, Qin Yueshuang, Yang Ruizhao. Hydraulic fracture mapping for a tight sands reservoir by surface based microseismic monitoring[J]. Progress in Geophysics, 2014, 29(5): 2136-2139. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201405021.htm
    [5]
    Blanton T L. Propagation of hydraulically and dynamically induced fractures in naturally fractured reservoirs[C]// SPE Unconventional Gas Technology Symposium. Louisville, Kentucky. Society of Petroleum Engineers, 1986: 1-15.
    [6]
    Lamont N, Jessen F W. The effects of existing fractures in rocks on the extension of hydraulic fractures[J]. Journal of Petroleum Technology, 1963, 15(2): 203-209. doi: 10.2118/419-PA
    [7]
    陈勉, 庞飞, 金衍. 大尺寸真三轴水力压裂模拟与分析[J]. 岩石力学与工程学报, 2000, 19(S1): 868-872. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2000S1009.htm

    Chen Mian, Pang Fei, Jin Yan. Experiments and analysis on hydraulic fracturing by a large-size triaxial simulator[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(S1): 868-872. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2000S1009.htm
    [8]
    马耕, 张帆, 刘晓, 等. 裂缝性储层中水力裂缝扩展规律的试验研究[J]. 采矿与安全工程学报, 2017, 34(5): 993-999. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201705025.htm

    Ma Geng, Zhang Fan, Liu Xiao, et al. Experimental study on hydraulic fracture propagation in fractured reservoir[J]. Journal of Mining & Safety Engineering, 2017, 34(5): 993-999. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201705025.htm
    [9]
    Warpinski N R, Teufel L W. Influence of geologic discontinuities on hydraulic fracture propagation[J]. Journal of Petroleum Technology, 1987, 39(2): 209-220. doi: 10.2118/13224-PA
    [10]
    Warpinski N R, Clark J A, Schmidt R A, et al. Laboratory investigation on the-effect of in-situ stresses on hydraulic fracture containment[J]. Society of Petroleum Engineers, 1982, 22(3): 333-340. doi: 10.2118/9834-PA
    [11]
    Beugelsdijk L J L, Pater C J D, Sato K. Experimental hydraulic fracture propagation in a multi-fractured medium[C]// SPE Asia Pacific Conference on Integrated Modelling for Asset Management. Yokohama Japan: SPE, 2000.
    [12]
    林鹤, 李德旗, 周博宇, 等. 天然裂缝对压裂改造效果的影响[J]. 石油地球物理勘探, 2018, 53(S2): 156-161, 167, 13. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2018S2024.htm

    Lin He, Li Deqi, Zhou Boyu, et al. Influences of natural cracks on fracturing[J]. Oil Geophysical Prospecting, 2018, 53(S2): 156-161, 167, 13. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2018S2024.htm
    [13]
    夏彬伟, 刘浪, 彭子烨, 等. 致密砂岩水平井多裂缝扩展及转向规律研究[J]. 岩土工程学报, 2020, 42(8): 1549-1555. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008027.htm

    Xia Binwei, Liu Lang, Peng Ziye, et al. Multi-fracture propagation and deflection laws of horizontal wells in tight sandstone[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1549-1555. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008027.htm
    [14]
    樊建明, 屈雪峰, 王冲, 等. 鄂尔多斯盆地致密储集层天然裂缝分布特征及有效裂缝预测新方法[J]. 石油勘探与开发, 2016, 43(5): 740-748. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201605010.htm

    Fan Jianming, Qu Xuefeng, Wang Chong, et al. Natural fracture distribution and a new method predicting effective fractures in tight oil reservoirs of Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(5): 740-748. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201605010.htm
    [15]
    刘格云, 黄臣军, 周新桂, 等. 鄂尔多斯盆地三叠系延长组裂缝发育程度定量评价[J]. 石油勘探与开发, 2015, 42(4): 444-453. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201504006.htm

    Liu Geyun, Huang Chenjun, Zhou Xingui, et al. Quantitative evaluation of fracture development in Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(4): 444-453. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201504006.htm
    [16]
    徐延勇, 丁万贵, 李超, 等. 鄂尔多斯盆地东缘临兴区块山西组天然裂缝发育特征与定量预测[J]. 中国煤炭地质, 2019, 31(7): 1-6. doi: 10.3969/j.issn.1674-1803.2019.07.01

    Xu Yanyong, Ding Wangui, Li Chao, et al. Shanxi formation natural fissure development features and quantitative prediction in Linxing Block, Eastern Ordos Basin[J]. Coal Geology of China, 2019, 31(7): 1-6. doi: 10.3969/j.issn.1674-1803.2019.07.01
    [17]
    朱超. 临兴地区煤系气开发地质单元[D]. 徐州: 中国矿业大学, 2019.
    [18]
    陶传奇. 鄂尔多斯盆地东缘临兴地区深部煤层气富集成藏规律研究[D]. 北京: 中国矿业大学(北京), 2019.
    [19]
    王赞惟. 鄂尔多斯盆地东缘临兴地区盒8段储层微观孔隙结构及渗流特征[J]. 非常规油气, 2020, 7(1): 59-64. doi: 10.3969/j.issn.2095-8471.2020.01.012

    Wang Zanwei. Microscopic pore structure and the seepage characteristics in tight sandstone reservoir of the 8th member of lower Shihezi formation in Linxing area of east Ordos basin[J]. Unconventional Oil & Gas, 2020, 7(1): 59-64. doi: 10.3969/j.issn.2095-8471.2020.01.012
    [20]
    赵岳, 王延斌, 钟大康, 等. 致密砂岩储集层成岩演化与致密油充注成藏关系研究——以鄂尔多斯盆地延长组为例[J]. 矿业科学学报, 2018, 3(2): 106-118. http://kykxxb.cumtb.edu.cn/article/id/128

    Zhao Yue, Wang Yanbin, Zhong Dakang, et al. Study on the relationship between tight sandstone reservoir diagenetic evolution and hydrocarbon reservoirs filling: A case from the Yanchang Formation, Ordos Basin[J]. Journal of Mining Science and Technology, 2018, 3(2): 106-118. http://kykxxb.cumtb.edu.cn/article/id/128
    [21]
    刘玲, 汤达祯, 许浩. 临兴上古生界致密储层裂缝发育特征及对致密气富集影响[J]. 高校地质学报, 2019, 25(3): 457-465. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201903014.htm

    Liu Ling, Tang Dazhen, Xu Hao. Development of fractures and its effects on gas accumulation in the upper Paleozoic tight sandstone reservoirs of the Linxing block[J]. Geological Journal of China Universities, 2019, 25(3): 457-465. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201903014.htm
    [22]
    Gao X D, Wang Y B, Ni X M, et al. Recovery of tectonic traces and its influence on coalbed methane reservoirs: a case study in the Linxing area, eastern Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 2018, 56: 414-427. doi: 10.1016/j.jngse.2018.06.029
    [23]
    李勇, 汤达祯, 孟尚志, 等. 鄂尔多斯盆地东缘煤储层地应力状态及其对煤层气勘探开发的影响[J]. 矿业科学学报, 2017, 2(5): 416-424. http://kykxxb.cumtb.edu.cn/article/id/91

    Li Yong, Tang Dazhen, Meng Shangzhi, et al. The in situ stress of coal reservoirs in east margin of Ordos basin and its influence on coalbed methane[J]. Journal of Mining Science and Technology, 2017, 2(5): 416-424. http://kykxxb.cumtb.edu.cn/article/id/91
    [24]
    赵石虎. 鄂尔多斯东缘临兴地区深部煤储层古应力与裂缝预测[D]. 北京: 中国矿业大学(北京), 2018.
    [25]
    仇德智. 天然裂缝影响下人工裂缝走向判别准则建立[D]. 大庆: 东北石油大学, 2018.
    [26]
    李鑫, 傅雪海. 潞安矿区煤储层裂隙及其与人工裂缝的关系[J]. 煤田地质与勘探, 2015, 43(1): 22-25, 29. doi: 10.3969/j.issn.1001-1986.2015.01.005

    Li Xin, Fu Xuehai. The relationship between natural fractures and artificial fractures in coal reservoir in Lu'an mining area[J]. Coal Geology & Exploration, 2015, 43(1): 22-25, 29. doi: 10.3969/j.issn.1001-1986.2015.01.005
    [27]
    Chatterjee R, Gupta S D, Mandal P P. Fracture and stress orientation from borehole image logs: a case study from Cambay basin, India[J]. Journal of the Geological Society of India, 2017, 89(5): 573-580. doi: 10.1007/s12594-017-0646-3
    [28]
    边利恒, 张亮, 刘清. 天然裂隙对煤层气压裂效果的影响: 以鄂尔多斯盆地韩城区块为例[J]. 天然气工业, 2018, 38(S1): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG2018S1025.htm

    Bian Liheng, Zhang Liang, Liu Qing. Influence of natural fractures on coalbed gas fracturing effect: a case study of Hancheng block in Ordos Basin[J]. Natural Gas Industry, 2018, 38(S1): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG2018S1025.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (528) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return