Volume 6 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Hao Dengcheng, Wang Guorui, Li Peixian, Shen Jiaqi, Cao Yuxi, Yang Zhonghui. Subsection Kalman filter model for mining subsidence monitoring data processing[J]. Journal of Mining Science and Technology, 2021, 6(4): 371-378. doi: 10.19606/j.cnki.jmst.2021.04.001
Citation: Hao Dengcheng, Wang Guorui, Li Peixian, Shen Jiaqi, Cao Yuxi, Yang Zhonghui. Subsection Kalman filter model for mining subsidence monitoring data processing[J]. Journal of Mining Science and Technology, 2021, 6(4): 371-378. doi: 10.19606/j.cnki.jmst.2021.04.001

Subsection Kalman filter model for mining subsidence monitoring data processing

doi: 10.19606/j.cnki.jmst.2021.04.001
  • Received Date: 2020-12-29
  • Rev Recd Date: 2021-03-02
  • Publish Date: 2021-08-01
  • Kalman filtering is used to filter GNSS mining subsidence monitoring data in order to solve the problems of long period and high frequency GNSS mining subsidence monitoring data that are greatly affected by the external environment, high data interference noise and low data reliability. Firstly, the regression analysis method is adopted to automatically divide the monitoring data into three parts: the initial stage, the active stage and the decline stage. The subsidence in the initial stage and the decline stage is relatively stable, and the subsidence data is filtered by the standard Kalman filtering model. The add correction kalman filter model was constructed to deal with the data in the active stage of rapid subsidence change. The filter program was established by Python language, and the monitoring data of five-year and hourly interval sampling rate in a mining area in Ningxia were calculated and analyzed. The results showed that the process curve of different kalman filtering results in different stages was consistent with the measured results, and the filtering effect was good. The add correction kalman filter model can effectively process the monitoring data of mining area with large subsidence variation. The method constructed in this paper can effectively reduce the impact of data fluctuation on the subsidence result and improve the reliability of monitoring data. The research results provide a scientific basis for long-term and high-frequency settlement monitoring data processing.
  • loading
  • [1]
    孔改红, 李富平. 采煤沉陷区环境保护与治理研究[J]. 河北煤炭, 2006(1): 4-5, 60. doi: 10.3969/j.issn.1007-1083.2006.01.002

    Kong Gaihong, Li Fuping. Research on environmental protection and control in mining sinking region[J]. Hebei Coal, 2006(1): 4-5, 60. doi: 10.3969/j.issn.1007-1083.2006.01.002
    [2]
    魏盛昊, 杨更社. 矿区地表沉陷监测技术发展状况[J]. 价值工程, 2019, 38(6): 191-193. https://www.cnki.com.cn/Article/CJFDTOTAL-JZGC201906060.htm

    Wei Shenghao, Yang Gengshe. Development of surface subsidence monitoring technology in mining area[J]. Value Engineering, 2019, 38(6): 191-193. https://www.cnki.com.cn/Article/CJFDTOTAL-JZGC201906060.htm
    [3]
    张敬霞, 刘超, 龙仁波, 等. 矿区高精度GPS地表变形监测体系[J]. 合肥工业大学学报: 自然科学版, 2013, 36(7): 855-860. doi: 10.3969/j.issn.1003-5060.2013.07.019

    Zhang Jingxia, Liu Chao, Long Renbo, et al. High-precision surface deformation monitoring system with GPS in mining area[J]. Journal of Hefei University of Technology: Natural Science, 2013, 36(7): 855-860. doi: 10.3969/j.issn.1003-5060.2013.07.019
    [4]
    白冰, 龚真春, 宋宁, 等. "陆态网络"GNSS区域站观测环境变化对数据质量的影响[J]. 甘肃科技, 2020, 36(18): 10-12. doi: 10.3969/j.issn.1000-0952.2020.18.005

    Bai Bing, Gong Zhenchun, Song Ning, et al. The influence of changing environment on the quality of GNSS regional stations observation data based on CMONOC[J]. Gansu Science and Technology, 2020, 36(18): 10-12. doi: 10.3969/j.issn.1000-0952.2020.18.005
    [5]
    王启元, 赵艳玲, 房铄东, 等. 基于多光谱遥感的裸土土壤含水量反演研究[J]. 矿业科学学报, 2020, 5(6): 608-615. doi: 10.19606/j.cnki.jmst.2020.06.002

    Wang Qiyuan, Zhao Yanling, Fang Shuodong, et al. Inversion of soil moisture in bare soil based on multi-spectral remote sensing[J]. Journal of Mining Science and Technology, 2020, 5(6): 608-615. doi: 10.19606/j.cnki.jmst.2020.06.002
    [6]
    朱琳. 集合卡尔曼滤波同化方法的研究[D]. 南京: 南京信息工程大学, 2007.
    [7]
    刘波, 杨伟红. 考虑时间效应的隧道开挖三维沉降预测模型及应用[J]. 矿业科学学报, 2019, 4(5): 384-393. http://kykxxb.cumtb.edu.cn/article/id/237

    Liu Bo, Yang Weihong. Prediction model and application of three-dimensional ground surface settlement induced by tunnel excavation considering time effect[J]. Journal of Mining Science and Technology, 2019, 4(5): 384-393. http://kykxxb.cumtb.edu.cn/article/id/237
    [8]
    王学斌, 徐建宏, 张章. 卡尔曼滤波器参数分析与应用方法研究[J]. 计算机应用与软件, 2012, 29(6): 212-215. https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ201206059.htm

    Wang Xuebin, Xu Jianhong, Zhang Zhang. On analysis and application approach for Kalman filter parameters[J]. Computer Applications and Software, 2012, 29(6): 212-215. https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ201206059.htm
    [9]
    王仁, 赵长胜, 夏志浩, 等. 无迹卡尔曼滤波衰减记忆算法研究[J]. 测绘通报, 2015(12): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201512007.htm

    Wang Ren, Zhao Changsheng, Xia Zhihao, et al. Study of attenuation memory unscented Kalman filtering algorithm[J]. Bulletin of Surveying and Mapping, 2015(12): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201512007.htm
    [10]
    王飞, 史建涛. 一种基于自适应滤波的雷达目标跟踪算法[J]. 现代雷达, 2019, 41(10): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-XDLD201910007.htm

    Wang Fei, Shi Jiantao. A radar target tracking algorithm based on adaptive filtering[J]. Modern Radar, 2019, 41(10): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-XDLD201910007.htm
    [11]
    李帅印, 段建民, 冉旭辉. 基于多层激光雷达的目标检测与跟踪算法[J]. 传感器与微系统, 2020, 39(6): 123-126.

    Li Shuaiyin, Duan Jianmin, Ran Xuhui. Algorithm of target detection and tracking based on multi-layer LiDAR[J]. Transducer and Microsystem Technologies, 2020, 39(6): 123-126.
    [12]
    陈新兴. 基于UWB的护理机器人定位系统研究[D]. 石家庄: 河北科技大学, 2020.
    [13]
    王鹏, 方震, 夏攀, 等. 面向移动健康应用的UWB室内定位方法[J]. 导航定位学报, 2020, 8(6): 37-45. doi: 10.3969/j.issn.2095-4999.2020.06.006

    Wang Peng, Fang Zhen, Xia Pan, et al. An UWB indoor positioning system for mobile health application[J]. Journal of Navigation and Positioning, 2020, 8(6): 37-45. doi: 10.3969/j.issn.2095-4999.2020.06.006
    [14]
    占芳芳. 改进抗差Kalman滤波的INS/GPS紧组合导航算法[J]. 兰州工业学院学报, 2017, 24(5): 75-79. doi: 10.3969/j.issn.1009-2269.2017.05.016

    Zhan Fangfang. INS/GPS tightly coupled navigation based on improved robust Kalman filter[J]. Journal of Lanzhou Institute of Technology, 2017, 24(5): 75-79. doi: 10.3969/j.issn.1009-2269.2017.05.016
    [15]
    封博卿, 贺晗, 李聪旭, 等. 基于GNSS的铁路通信铁塔变形监测方法[J]. 铁道建筑, 2020, 60(9): 154-158. doi: 10.3969/j.issn.1003-1995.2020.09.36

    Feng Boqing, He Han, Li Congxu, et al. Deformation monitoring method of railway communication tower based on GNSS[J]. Railway Engineering, 2020, 60(9): 154-158. doi: 10.3969/j.issn.1003-1995.2020.09.36
    [16]
    周先林, 张慧君, 和涛, 等. GPS/INS松耦合组合导航的自适应卡尔曼滤波算法研究[J]. 时间频率学报, 2020, 43(3): 222-230. https://www.cnki.com.cn/Article/CJFDTOTAL-SXTT202003007.htm

    Zhou Xianlin, Zhang Huijun, He Tao, et al. Research on adaptive Kalman filter algorithm for GPS/INS loosely coupled integrated navigation[J]. Journal of Time and Frequency, 2020, 43(3): 222-230. https://www.cnki.com.cn/Article/CJFDTOTAL-SXTT202003007.htm
    [17]
    刘春, 卫吉祥, 李维华, 等. 改进的自适应卡尔曼滤波在北斗伪距单点定位中的研究[J]. 电子测量与仪器学报, 2020, 34(10): 142-148. https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY202010017.htm

    Liu Chun, Wei Jixiang, Li Weihua, et al. Research on improved adaptive Kalman filter in Beidou pseudorange single point positioning[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(10): 142-148. https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY202010017.htm
    [18]
    李康乐, 邵小强, 潘红光, 等. 自适应抗差卡尔曼滤波对井下定位NLOS时延抑制方法的研究[J]. 西安科技大学学报, 2020, 40(1): 173-180. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB202001025.htm

    Li Kangle, Shao Xiaoqiang, Pan Hongguang, et al. Downhole positioning NLOS delay suppression method based on adaptive robust Kalman filter[J]. Journal of Xi'an University of Science and Technology, 2020, 40(1): 173-180. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB202001025.htm
    [19]
    贺晗, 陶庭叶, 冯佳琪, 等. 抗差自适应卡尔曼滤波模型及其在塌陷区监测中的应用[J]. 大地测量与地球动力学, 2019, 39(12): 1265-1269. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201912010.htm

    He Han, Tao Tingye, Feng Jiaqi, et al. Adaptive robust Kalman filtering model and its application in subsidence area monitoring[J]. Journal of Geodesy and Geodynamics, 2019, 39(12): 1265-1269. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201912010.htm
    [20]
    阎跃观, 代文晨, 牛永泽, 等. 矿区非线性沉降的GM(1, 1)预计残差改进模型及应用[J]. 矿业科学学报, 2020, 5(5): 475-481. doi: 10.19606/j.cnki.jmst.2020.05.001

    Yan Yueguan, Dai Wenchen, Niu Yongze, et al. Improved GM(1, 1) model based on predicted residual in mining area with non-linear subsidence and its application[J]. Journal of Mining Science and Technology, 2020, 5(5): 475-481. doi: 10.19606/j.cnki.jmst.2020.05.001
    [21]
    贾运红, 王振翀, 焦晓峰. 基于分段线性回归的煤机装备机载操作臂定位误差补偿方法[J]. 矿业科学学报, 2020, 5(6): 655-661. doi: 10.19606/j.cnki.jmst.2020.06.008

    Jia Yunhong, Wang Zhenchong, Jiao Xiaofeng. A positioning error compensation method of coal machine equipment airborne operating arm based on piecewise linear regressiom[J]. Journal of Mining Science and Technology, 2020, 5(6): 655-661. doi: 10.19606/j.cnki.jmst.2020.06.008
    [22]
    熊迪, 吴浩, 杨剑, 等. 回归分析与抗差卡尔曼滤波协同下大型边坡短期变形的预测方法[J]. 金属矿山, 2019(4): 163-167. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201904031.htm

    Xiong Di, Wu Hao, Yang Jian, et al. Forecast of short-term deformation of large-scale slope based on regression analysis and robust Kalman filter[J]. Metal Mine, 2019(4): 163-167. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201904031.htm
    [23]
    彭丁聪. 卡尔曼滤波的基本原理及应用[J]. 软件导刊, 2009, 8(11): 32-34. https://www.cnki.com.cn/Article/CJFDTOTAL-RJDK200911011.htm

    Peng Dingcong. Basic principle and application of Kalman filter[J]. Software Guide, 2009, 8(11): 32-34. https://www.cnki.com.cn/Article/CJFDTOTAL-RJDK200911011.htm
    [24]
    王利, 李亚红, 刘万林. 卡尔曼滤波在大坝动态变形监测数据处理中的应用[J]. 西安科技大学学报, 2006, 26(3): 353-357. doi: 10.3969/j.issn.1672-9315.2006.03.015

    Wang Li, Li Yahong, Liu Wanlin. Application of Kalman filtering in data processing of dam dynamic deformation monitoring[J]. Journal of Xi'an University of Science and Technology, 2006, 26(3): 353-357. doi: 10.3969/j.issn.1672-9315.2006.03.015
    [25]
    余学祥, 张华海, 吕伟才, 等. Kalman滤波在GPS监测网中的应用[J]. 工程勘察, 2000, 28(4): 33-35, 63. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200004009.htm

    Yu Xuexiang, Zhang Huahai, Lü Weicai, et al. Kalman filtering and its application in GPS monitoring networks[J]. Geotechnical Investigation & Surveying, 2000, 28(4): 33-35, 63. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200004009.htm
    [26]
    黄初敏. 基于Python的设备动态智能监测系统开发[J]. 现代制造技术与装备, 2021, 57(2): 79-80. doi: 10.3969/j.issn.1673-5587.2021.02.031

    Huang Chumin. Development of device dynamic intelligent monitoring system based on Python[J]. Modern Manufacturing Technology and Equipment 2021, 57(2): 79-80. doi: 10.3969/j.issn.1673-5587.2021.02.031
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views (792) PDF downloads(56) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return