留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超声横波测试的Na基膨润土充填体强度预测模型研究

林强 管华栋 王观石 程锦山

林强, 管华栋, 王观石, 程锦山. 基于超声横波测试的Na基膨润土充填体强度预测模型研究[J]. 矿业科学学报, 2024, 9(3): 426-434. doi: 10.19606/j.cnki.jmst.2024.03.011
引用本文: 林强, 管华栋, 王观石, 程锦山. 基于超声横波测试的Na基膨润土充填体强度预测模型研究[J]. 矿业科学学报, 2024, 9(3): 426-434. doi: 10.19606/j.cnki.jmst.2024.03.011
LIN Qiang, GUAN Huadong, WANG Guanshi, CHENG Jinshan. Research on the strength prediction model of Na based bentonite filling body based on ultrasonic transverse wave testing[J]. Journal of Mining Science and Technology, 2024, 9(3): 426-434. doi: 10.19606/j.cnki.jmst.2024.03.011
Citation: LIN Qiang, GUAN Huadong, WANG Guanshi, CHENG Jinshan. Research on the strength prediction model of Na based bentonite filling body based on ultrasonic transverse wave testing[J]. Journal of Mining Science and Technology, 2024, 9(3): 426-434. doi: 10.19606/j.cnki.jmst.2024.03.011

基于超声横波测试的Na基膨润土充填体强度预测模型研究

doi: 10.19606/j.cnki.jmst.2024.03.011
基金项目: 

江西省教育厅科学技术研究项目 GJJ190499

江西理工大学人才培养项目 205200100112

详细信息
    作者简介:

    林强(2000—),男,江西赣州人,硕士研究生,主要从事离子型稀土绿色提取及岩石力学等方面的研究工作。Tel:18365413750,E-mail:2791722483@qq.com

    通讯作者:

    管华栋(1988—),男,江西赣州人,博士,讲师,主要从事岩石力学等方面的研究工作。E-mail:yidixuezi@126.com

  • 中图分类号: TD853

Research on the strength prediction model of Na based bentonite filling body based on ultrasonic transverse wave testing

  • 摘要:

    充填体作为充填采矿法的核心单元,其强度是保障安全开采的重要指标。Na基膨润土的亚甲基蓝吸附量和生坯抗压强度较高,是制备充填体的优质添加剂,然而鲜有其掺量与充填体强度之间关系的研究成果。本文基于超声波测试技术和单轴压缩试验,分析不同Na基膨润土掺量充填体的横波波速、主频幅值、幅值衰减系数、波形分形维数在各龄期的变化规律,结合敏感性分析遴选出对抗压强度变化最敏感的声学参数。建立了不同Na基膨润土掺量下充填体强度的预测模型,并结合显著性检验及对比分析,对强度预测模型进行了验证。研究成果可为开展充填体单轴抗压强度预测的相关理论研究和工程应用提供参考和帮助。

  • 图  1  充填体试样制作

    Figure  1.  Preparation of filling sample

    图  2  实验设备

    Figure  2.  Experimental equipment

    图  3  不同龄期及掺量与横波波速变化曲线

    Figure  3.  Variation curve of shear wave velocity with different age and content

    图  4  不同龄期及掺量与主频幅值变化曲线

    Figure  4.  Variation curve of main frequency amplitude and dosage at different ages

    图  5  不同龄期及掺量与幅值衰减系数变化曲线

    Figure  5.  Variation curve of attenuation coefficient between different ages and dosage and amplitude

    图  6  不同龄期及掺量与波形分形维数变化曲线

    Figure  6.  Variation curve of fractal dimension of waveform with different age and dosage

    图  7  不同龄期与抗压强度关系

    Figure  7.  Relationship between different ages and compressive strength

    图  8  声学参数对充填体抗压强度变化敏感性分析

    Figure  8.  Sensitivity analysis of acoustic parameters to changes in compressive strength of filling materials

    图  9  3种模型的回归系数t值统计

    Figure  9.  Regression coefficient t-values for the three models

    表  1  试样的主要化学成分

    Table  1.   Chemical composition of sample materials  %

    化学成分 SiO2 Al2O3 MgO SO3 Fe2O3 TiO2 MnO CaO K2O
    水泥 20.41 4.68 2.66 3.16 3.20 0.27 62.23 0.71
    粉煤灰 51.38 33.07 1.02 0.24 4.58 1.14 4.13 0.86
    尾砂 63.72 18.77 2.77 0.75 4.08 0.50 0.21 3.98 4.26
    炉渣 33.27 10.70 7.78 2.20 1.70 1.18 1.13 39.59
    下载: 导出CSV

    表  2  尾砂粒径分布

    Table  2.   Distribution of tail sand particle size

    粒径/μm -16 -40 -80 -160 -233 -300 -400 +400
    尾砂产率/% 4.64 7.81 9.15 18.25 10.30 20.63 27.21 2.01
    尾砂累计/% 4.64 12.45 21.6 39.85 50.15 70.78 97.99 100.00
    下载: 导出CSV

    表  3  炉渣粒径分布

    Table  3.   Particle size distribution of slag

    粒径/μm -5 +5~10 +10~20 +20~30 +30~40 +40
    炉渣产率/% 12.50 37.69 28.19 15.86 5.77 0.29
    炉渣累计/% 12.20 49.89 78.08 93.94 99.71 100.00
    下载: 导出CSV

    表  4  σ-的回归关系拟合

    Table  4.   Regression fitting results of σ-α relationship

    回归模型 龄期/d 回归方程 R2
    线性 7 σ=3.88-0.007 0.74
    14 σ=8.47-0.04 0.92
    28 σ=13.73-0.06 0.95
    多项式 7 σ=6.28-0.07α-(2.9E-4)α2 0.89
    14 σ=8.66-0.04α-(2.73E-5)α2 0.80
    28 σ=12.98-0.05α-(1.89E-5)α2 0.80
    指数 7 σ=3.2-47.31e(-α/12.08) 0.87
    14 σ=29.9e (α/611.9)-18.16 0.96
    28 σ=42.3e(α/588.9)-11.16 0.33
    幂函数 7 σ=7.17α(-0.18) 0.64
    14 σ=69α(-0.58) 0.77
    28 σ==67.7α(-0.46) 0.97
    对数函数 7 σ=ln(42.07-0.18α) 0.53
    14 σ=ln(848.2-7.52α) 0.95
    28 σ=ln(38 772-353.7α) 0.94
    下载: 导出CSV

    表  5  不同模型各龄期相关性系数

    Table  5.   Correlation coefficients of different models at different ages

    养护龄期/d 文献[10]模型相关性系数γ2 本文模型相关性系数γ2
    7 0.98 0.74
    14 0.92 0.92
    28 0.74 0.95
    下载: 导出CSV
  • [1] 谭玉叶, 熊朝辉, 宋卫东. 地下金属矿山结构型充填体力学研究现状与发展趋势[J]. 化工矿物与加工, 2021, 50(12): 7-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ202112002.htm

    TAN Yuye, XIONG Zhaohui, SONG Weidong. Study on structural backfill mechanics and the development trend in underground metal mine[J]. Industrial Minerals & Processing, 2021, 50(12): 7-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ202112002.htm
    [2] 程飞鹏, 杨冬亮, 常乐, 等. 钠化改性河南南部膨润土吸附亚甲基蓝性能分析[J]. 环境科学, 2022, 43(12): 5676-5686. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202212033.htm

    CHENG Feipeng, YANG Dongliang, CHANG Le, et al. Adsorption of methylene blue on sodium-modified bentonite from southern part of Henan[J]. Environmental Science, 2022, 43(12): 5676-5686. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202212033.htm
    [3] MUSSO T B, Pettinari G, Pozo M, et al. A new deposit of Na-bentonite from the Upper Cretaceous Anacleto Formation(Neuquén Basin, Argentina): Characterization and properties[J]. Applied Clay Science, 2022, 220: 106461. doi: 10.1016/j.clay.2022.106461
    [4] 唐贝, 崔溦, 张宝增, 等. 膨润土对塑性混凝土力学性能的影响及微观机理[J]. 建筑材料学报, 2023, 26(12): 1254-1261. doi: 10.3969/j.issn.1007-9629.2023.12.003

    TANG Bei, CUI Wei, ZHANG Baozeng, et al. Effect of bentonite on mechanical properties of plastic concrete and its microscopic mechanism[J]. Journal of Building Materials, 2023, 26(12): 1254-1261. doi: 10.3969/j.issn.1007-9629.2023.12.003
    [5] 余姚, 饶运章, 许威. 膨润土对胶结充填体力学特性的影响[J]. 矿业研究与开发, 2019, 39(11): 91-94. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201911018.htm

    YU Yao, RAO Yunzhang, XU Wei. Effect of bentonite on mechanical properties of cemented backfill[J]. Mining Research and Development, 2019, 39(11): 91-94. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201911018.htm
    [6] 张友锋, 付玉华, 余姚. 多次冲击下掺膨润土胶结充填体力学特性试验研究[J]. 矿冶工程, 2022, 42(1): 30-34, 40. doi: 10.3969/j.issn.0253-6099.2022.01.007

    ZHANG Youfeng, FU Yuhua, YU Yao. Experimental study on mechanical properties of cemented filling body with bentonite under repeated impacts[J]. Mining and Metallurgical Engineering, 2022, 42(1): 30-34, 40. doi: 10.3969/j.issn.0253-6099.2022.01.007
    [7] 李文臣, 侯运炳, 韩帅. 硫酸盐对胶结充填体单轴抗压强度与弹性模量关系影响研究[J]. 中国煤炭, 2016, 42(1): 102-105. doi: 10.3969/j.issn.1006-530X.2016.01.025

    LI Wenchen, HOU Yunbing, HAN Shuai. Research of sulphate effects on correlation between uniaxial compressive strength of cemented filling and modulus of elasticity[J]. China Coal, 2016, 42(1): 102-105. doi: 10.3969/j.issn.1006-530X.2016.01.025
    [8] 刘明利, 申康, 刘钟涛. 多因素影响下的充填体强度预测与分析[J]. 矿业研究与开发, 2023, 43(7): 5-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202307002.htm

    LIU Mingli, SHEN Kang, LIU Zhongtao. Prediction and analysis of backfill strength under the influence of multiple factors[J]. Mining Research and Development, 2023, 43(7): 5-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202307002.htm
    [9] 袁丛祥, 刘志祥, 杨小聪, 等. 基于WOA-XGBoost模型的胶结充填体强度预测[J]. 高压物理学报, 2023, 37(5): 115-125. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL202305011.htm

    YUAN Congxiang, LIU Zhixiang, YANG Xiaocong, et al. Strength prediction of cemented paste backfill body based on WOA-XGBoost model[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 115-125. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL202305011.htm
    [10] 穆光慈, 邓飞, 赖祖豪. 胶结充填体强度与超声波波速关系研究[J]. 化工矿物与加工, 2020, 49(10): 1-3, 53. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ202010001.htm

    MU Guangci, DENG Fei, LAI Zuhao. Study on the relationship between strength and ultrasound velocity of cemented fill mass[J]. Industrial Minerals & Processing, 2020, 49(10): 1-3, 53. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ202010001.htm
    [11] PIRAPAKARAN K, SIVAKUGAN N. Arching within hydraulic fill stopes[J]. Geotechnical and Geological Engineering, 2007, 25(1): 25-35. doi: 10.1007/s10706-006-0003-6
    [12] LI L, AUBERTIN M, BELEM T. Formulation of a three dimensional analytical solution to evaluate stresses in backfilled vertical narrow openings[J]. Canadi-an Geotechnical Journal, 2005, 42(5): 1705-1717.
    [13] LI L, AUBERTIN M. An improved analytical solution to estimate the stress state in sub-vertical backfilled stope[J]. Canadian Geotechnical Journal, 2008, 45(10): 1487-1496. doi: 10.1139/T08-060
    [14] LI L, AUBERTIN M. Influence of water pressure on the stress state in stopes with cohesionless backfill[J]. Geotechnical and Geological Engineering, 2009, 27(1): 1-11. doi: 10.1007/s10706-008-9207-2
    [15] LI L, AUBERTIN M. A three-dimensional analysis of the total and effective stresses in submerged backfilled stopes[J]. Geotechnical and Geological Engineering, 2009, 27(4): 559-569. doi: 10.1007/s10706-009-9257-0
    [16] LIU G, LI L, YANG X, et al. Numerical Analysis of Stress Distribution in Backfilled Stopes Considering Interfaces between the Backfill and Rock Walls[J]. International Journal of Geomechanics, 2017, 17(2): 06016014.1-06016014.9. doi: 10.1061/(ASCE)GM.1943-5622.0000702
    [17] 董越, 杨志强, 高谦. 正交试验协同BP神经网络模型预测充填体强度[J]. 材料导报, 2018, 32(6): 1032-1036. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201806035.htm

    DONG Yue, YANG Zhiqiang, GAO Qian. Strength forecasting of backfilling materials by BP neural network model collaborated with orthogonal experiment[J]. Materials Review, 2018, 32(6): 1032-1036. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201806035.htm
    [18] MOSTOFI M, RASOULI V, MAWULI E. An estimation of rock strength using a drilling performance model: a case study in blacktip field, Australia[J]. Rock Mechanics and Rock Engineering, 2011, 44(3): 305-316. doi: 10.1007/s00603-011-0142-9
    [19] 王琦, 孙会彬, 江贝, 等. 基于数字钻探和支持向量机预测岩体单轴抗压强度的方法[J]. 岩土力学, 2019, 40(3): 1221-1228. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903044.htm

    WANG Qi, SUN Huibin, JIANG Bei, et al. A method for predicting uniaxial compressive strength of rock mass based on digital drilling test technology and support vector machine[J]. Rock and Soil Mechanics, 2019, 40(3): 1221-1228. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903044.htm
    [20] 孙欢, 刘晓丽, 王恩志, 等. 基于X射线断层扫描预测岩石单轴抗压强度[J]. 岩石力学与工程学报, 2019, 38(S2): 3575-3582. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2032.htm

    SUN Huan, LIU Xiaoli, WANG Enzhi, et al. Prediction of uniaxial compressive strength of rock based on X-ray fault scanning[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3575-3582. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2032.htm
    [21] 程爱平, 戴顺意, 张玉山, 等. 胶结充填体损伤演化尺寸效应研究[J]. 岩石力学与工程学报, 2019, 38(S1): 3053-3060. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1046.htm

    CHENG Aiping, DAI Shunyi, ZHANG Yushan, et al. Study on size effect of damage evolution of cemented backfill[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 3053-3060. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1046.htm
    [22] 魏晓明, 郭利杰. 基于P波模量的原位胶结充填体强度预测模型研究[J]. 有色金属: 矿山部分, 2020, 72(5): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKU202005002.htm

    WEI Xiaoming, GUO Lijie. Study on strength prediction model of in situ cemented backfill based on P-wave modulus[J]. Nonferrous Metals: Mining Section, 2020, 72(5): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKU202005002.htm
    [23] 高喜才, 赵程, 王琪, 等. 早龄期充填混凝土力学行为超声波表征[J]. 采矿与岩层控制工程学报, 2022, 4(5): 91-98. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC202205009.htm

    GAO Xicai, ZHAO Cheng, WANG Qi, et al. Ultrasonic characterization of mechanical behavior of backfilling concrete at early age[J]. Journal of Mining and Strata Control Engineering, 2022, 4(5): 91-98. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC202205009.htm
    [24] CAO S, SONG W. Effect of filling interval time on themechanical strength and ultrasonic properties of cemented coarse tailing backfill[J]. International Journal of MineralProcessing, 2017, 166: 62-68.
    [25] 贾蓬, 祝鹏程, 李博, 等. 单轴压缩过程中岩石的实时超声波特性[J]. 中南大学学报: 自然科学版, 2022, 53(10): 3967-3977. doi: 10.11817/j.issn.1672-7207.2022.10.017

    JIA Peng, ZHU Pengcheng, LI Bo, et al. Characteristics of real-time ultrasonic wave during uniaxial compression of rock[J]. Journal of Central South University: Science and Technology, 2022, 53(10): 3967-397. doi: 10.11817/j.issn.1672-7207.2022.10.017
    [26] 汪永超, 管华栋, 王观石, 等. 不同入射频率下超声波横波在砂岩中的传播特性研究[J]. 工程地质学报, 2023, 31(2): 469-478. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202302013.htm

    WANG Yongchao, GUAN Huadong, WANG Guanshi, et al. Propagation characteristics of ultrasonic shear wave in sandstone under different incident frequencies[J]. Journal of Engineering Geology, 2023, 31(2): 469-478. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202302013.htm
    [27] 程锦山. 基于超声波横波传播特性胶结充填体力学特性反演研究[D]. 赣州: 江西理工大学, 2023.

    CHENG Jinshan. Back analysis of mechanical properties of cemented backfill based on ultrasonic shear wave propagation characteristics[D]. Ganzhou: Jiangxi University of Science and Technology, 2023.
    [28] 王如江, 任猛, 刘劲松, 等. 岩石波速与强度参数的相关性研究[J]. 矿业研究与开发, 2021, 41(9): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202109016.htm

    WANG Rujiang, REN Meng, LIU Jinsong, et al. Study on correlation between rock wave velocity and strength parameters[J]. Mining Research and Development, 2021, 41(9): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202109016.htm
    [29] 管华栋, 潘熙, 黄雅兰. 基于超声波测试的片岩单轴抗压强度预测模型[J]. 声学技术, 2023, 42(4): 489-494. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJS202304012.htm

    GUAN Huadong, PAN Xi, HUANG Yalan. Prediction model of schist uniaxial compressive strength based on ultrasonic tests[J]. Technical Acoustics, 2023, 42(4): 489-494. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJS202304012.htm
    [30] 金解放, 李夕兵, 殷志强. 英安斑岩物理力学参数与声波速度之间的关系[J]. 矿业研究与开发, 2011, 31(2): 15-17, 109. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201102004.htm

    JIN Jiefang, LI Xibing, YIN Zhiqiang. Relationship between physical and mechanical parameters and acoustic wave velocity of daciteporphyry[J]. Mining Research and Development, 2011, 31(2): 15-17, 109. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201102004.htm
    [31] 王永岩, 黄飒, 于卓群, 等. 考虑龄期的全尾砂胶结充填体强度预测模型建立及试验验证[J]. 煤炭技术, 2021, 40(8): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202108001.htm

    WANG Yongyan, HUANG Sa, YU Zhuoqun, et al. Establishment and experimental verification of strength prediction model for cemented tailings backfill considering age[J]. Coal Technology, 2021, 40(8): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202108001.htm
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  8
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-20
  • 修回日期:  2024-04-03
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回