留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CT扫描的三维重构煤体加载损伤演化特征及尺寸效应

张村 方尚鑫 贾胜 王永乐 王方田 白庆升

张村, 方尚鑫, 贾胜, 王永乐, 王方田, 白庆升. 基于CT扫描的三维重构煤体加载损伤演化特征及尺寸效应[J]. 矿业科学学报, 2024, 9(3): 413-425. doi: 10.19606/j.cnki.jmst.2024.03.010
引用本文: 张村, 方尚鑫, 贾胜, 王永乐, 王方田, 白庆升. 基于CT扫描的三维重构煤体加载损伤演化特征及尺寸效应[J]. 矿业科学学报, 2024, 9(3): 413-425. doi: 10.19606/j.cnki.jmst.2024.03.010
ZHANG Cun, FANG Shangxin, JIA Sheng, WANG Yongle, WANG Fangtian, BAI Qingsheng. Damage evolution characteristics of 3D-reconstructed coal during loading and its size effects based on CT scanning[J]. Journal of Mining Science and Technology, 2024, 9(3): 413-425. doi: 10.19606/j.cnki.jmst.2024.03.010
Citation: ZHANG Cun, FANG Shangxin, JIA Sheng, WANG Yongle, WANG Fangtian, BAI Qingsheng. Damage evolution characteristics of 3D-reconstructed coal during loading and its size effects based on CT scanning[J]. Journal of Mining Science and Technology, 2024, 9(3): 413-425. doi: 10.19606/j.cnki.jmst.2024.03.010

基于CT扫描的三维重构煤体加载损伤演化特征及尺寸效应

doi: 10.19606/j.cnki.jmst.2024.03.010
基金项目: 

国家重点研发计划 2023YFC3012101

国家自然科学基金 52104155

中国博士后基金 2023M733778

详细信息
    作者简介:

    张村(1990—),男,江苏海门人,博士,副教授,博士生导师,主要从事煤矿开采与矿井水资源利用方面的教学与科研工作。Tel:15810194127,E-mail:cumt-zc@cumtb.edu.cn

  • 中图分类号: TD315

Damage evolution characteristics of 3D-reconstructed coal during loading and its size effects based on CT scanning

  • 摘要:

    煤体是一种包含孔隙结构和矿物成分的多孔材料,具有明显的各向异性和尺寸效应。为研究煤体各向异性及尺寸效应对破坏特征的影响,本文提出了一种基于CT扫描、核磁共振和X衍射等技术手段的煤样内部孔隙、矿物成分表征和三维重构模拟方法。在此基础上,反演实验室单轴压缩获得了三维重构模型煤基质和矿物成分的模拟参数,进一步模拟分析了不同宽高比煤体的强度损伤特征。模拟结果表明:①在加载过程中,塑性区首先在孔隙和矿物成分周边逐渐向外扩展连通。在空间分布上,塑性区前期由加载端垂直向内部扩展,后期转变为由四周水平向内部扩展,最终模型破坏的非塑性区形成“双圆台结构体”。②随着宽高比的增加,煤样的抗压强度(p)、达到屈服强度时的应变(ζ)以及弹性模量(K)均会增加,其中ζK呈线性增加,而p增幅逐渐减小。③在煤样单轴加载过程中总能量和弹性能呈指数增加,耗散能呈线性增加。随着宽高比增加,煤体内积聚的弹性能增加,破坏时释放的能量增大,更容易诱发动力冲击相关灾害。研究结果为冲击矿压地区区段煤柱尺寸的合理选择提供参考。

  • 图  1  402工作面动力显现区域

    Figure  1.  Dynamic display area of 402 working face

    图  2  煤样中矿物包裹体、孔裂隙和煤基质的分布

    C—煤基质;F—连通性裂隙;M—矿物包裹体;P—孤立孔

    Figure  2.  Distribution of mineral inclusions, pore fissures and coal matrix in coal samples

    图  3  对灰色图片进行预处理

    Figure  3.  Preprocessing gray images

    图  4  三维重构时阈值分割原理

    Figure  4.  Threshold segmentation principle during 3D reconstruction

    图  5  三维数值模型重构与网格划分

    Figure  5.  3D numerical model reconstruction and mesh generation

    图  6  实验室试验与数值模拟比较

    Figure  6.  Comparison between laboratory test and numerical simulation

    图  7  煤体三维数值模型

    Figure  7.  3D numerical model coal sample

    图  8  加载过程中3号模型内部塑性区变化情况

    Figure  8.  Changes of the plastic zone inside model No.3 during loading

    图  9  煤样破坏后的形态

    Figure  9.  Morphology of coal sample after failure

    图  10  加载过程中矿物对塑性区的影响

    Figure  10.  Influence of minerals on plastic zone during loading

    图  11  含石英碎片电子探针图像[30]

    Figure  11.  Electron probe image containing quartz fragments [30]

    图  12  不同宽高比模型应力应变曲线

    Figure  12.  Stress-strain curves of models with different aspect ratios

    图  13  不同宽高比岩体最大抗压强度

    Figure  13.  Maximum compressive strength of rock mass with different aspect ratios

    图  14  不同宽高比岩体弹性模量

    Figure  14.  Elastic modulus of rock mass with different aspect ratios

    图  15  不同宽高比煤样屈服强度时的应变

    Figure  15.  Strain at yield strength of coal samples with different aspect ratios

    图  16  煤岩体能量关系

    Figure  16.  Energy relationship between coal and rock mass

    图  17  不同宽高比煤样能量演化特征

    Figure  17.  Energy evolution characteristics of coal samples with different aspect ratios

    图  18  不同宽高比煤样峰值应力时能量演化规律

    Figure  18.  Energy evolution patterns of coal samples with different aspect ratios under peak stress

    图  19  不同宽高比煤样孔隙含量和耗散能关系

    Figure  19.  Relationship between pore content and dissipated energy in coal samples with different aspect ratios

    表  1  模型相关参数

    Table  1.   Model parameters

    编号 1 2 3 4 5 6 7 8 9
    节点数 41 733 67 571 84 897 77 489 141 203 122 103 144 415 302 702 378 112
    单元数 123 264 201 239 253 548 230 412 424 217 364 658 433 802 909 224 1 137 998
    底边长/像素 60 80 100 120 140 160 200 250 300
    宽高比 0.6∶1.0 0.8∶1.0 1.0∶1.0 1.2∶1.0 1.4∶1.0 1.6∶1.0 2.0∶1.0 2.5∶1.0 3.0∶1.0
    模型
    下载: 导出CSV

    表  2  矿物包裹体与煤基质压痕硬度

    Table  2.   Indentation hardness of mineral inclusions and coal matrix

    成分 压痕硬度/(kg·mm-2) 平均值/(kg·mm-2)
    矿物包裹体 135.8 120.9 70.2 205.6 89.2 124.34
    煤基质 39.2 34.8 33.7 38.5 36.9 36.62
    下载: 导出CSV

    表  3  数值模拟模型参数

    Table  3.   Parameters of numerical simulation model

    物理性质 体积模量/GPa 剪切模量/GPa 内聚力/MPa 内摩擦角/(°) 抗拉强度/MPa
    破坏前 破坏后 破坏前 破坏后
    煤基质 0.95 0.275 5.1 0.52 40 35 1
    矿物包裹体 14.7 11 12.85 40.6 1.5
    下载: 导出CSV

    表  4  不同宽高比煤样力学参数

    Table  4.   Mechanical parameters of coal samples with different aspect ratios

    编号 1号 2号 3号 4号 5号 6号 7号 8号 9号
    p/MPa 14.7 16.7 17.5 19.1 19.1 19.8 21.7 22.4 24.2
    ζ/% 1.17 1.25 1.26 1.28 1.32 1.31 1.32 1.38 1.39
    K/GPa 1.50 1.58 1.65 1.67 1.68 1.78 1.87 1.93 1.99
    下载: 导出CSV
  • [1] SONG H, JIANG Y, ELSWORTH D, et al. Scale effects and strength anisotropy in coal[J]. International Journal of Coal Geology, 2018, 195: 37-46. doi: 10.1016/j.coal.2018.05.006
    [2] 刘彦飞, 汤达祯, 许浩, 等. 基于核磁共振的煤岩孔裂隙应力变形特征[J]. 煤炭学报, 2015, 40(6): 1415-1421. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201506030.htm

    LIU Yanfei, TANG Dazhen, XU Hao, et al. Characteristics of the stress deformation of pore-fracture in coal based on nuclear magnetic resonance[J]. Journal of China Coal Society, 2015, 40(6): 1415-1421. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201506030.htm
    [3] 宫伟力, 李晨. 煤岩结构多尺度各向异性特征的SEM图像分析[J]. 岩石力学与工程学报, 2010, 29(S1): 2681-2689. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1018.htm

    GONG Weili, LI Chen. SEM image analysis of multi-scale anisotropy characteristics of coal and rock structure[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 2681-2689. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1018.htm
    [4] 龚爽, 赵毅鑫, 王震, 等. 层理对煤岩动态裂纹扩展分形特征的影响[J]. 煤炭学报, 2021, 46(8): 2574-2582. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202108018.htm

    GONG Shuang, ZHAO Yixin, WANG Zhen, et al. Effect of bedding on the fractal characteristics of dynamic crack propagation in coal rocks[J]. Journal of China Coal Society, 2021, 46(8): 2574-2582. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202108018.htm
    [5] 张剑, 康红普, 刘爱卿, 等. 山西西山矿区井下地应力场分布规律[J]. 煤炭学报, 2020, 45(12): 4006-4016. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202012005.htm

    ZHANG Jian, KANG Hongpu, LIU Aiqing, et al. Distribution law of underground in situ stress field in Xishan coal mine field, Shanxi Province[J]. Journal of China Coal Society, 2020, 45(12): 4006-4016. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202012005.htm
    [6] 王琦, 何满潮, 王允偲, 等. 切顶卸压无煤柱自成巷研究进展与展望[J]. 采矿与安全工程学报, 2023, 40(3): 429-447. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202303001.htm

    WANG Qi, HE Manchao, WANG Yuncai, et al. Research progress and prospect of automatically formed roadway by roof cutting and pressure relief without Pillars[J]. Journal of Mining & Safety Engineering, 2023, 40(3): 429-447. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202303001.htm
    [7] 王猛, 李志学, 夏恩乐, 等. 深部巷道围岩能量耗散与支护调控效应[J]. 采矿与安全工程学报, 2022, 39(4): 741-749. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202204011.htm

    WANG Meng, LI Zhixue, XIA Enle, et al. Energy dissipation and supporting regulation effect of surrounding rock in deep roadway[J]. Journal of Mining & Safety Engineering, 2022, 39(4): 741-749. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202204011.htm
    [8] 白永健, 葛华, 冯文凯, 等. 乌蒙山区红层软岩滑坡地质演化及灾变过程离心机模型试验研究[J]. 岩石力学与工程学报, 2019, 38(S1): 3025-3035. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1043.htm

    BAI Yongjian, GE Hua, FENG Wenkai, et al. Centrifuge model test study on geological evolution and disaster process of red bed soft rock landslide in Wumeng Mountain[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 3025-3035. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1043.htm
    [9] 卢方超, 高建良, 张玉贵, 等. 单轴加载煤孔、裂隙各向异性声波特征[J]. 地球物理学进展, 2018, 33(6): 2555-2562. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201806048.htm

    LU Fangchao, GAO Jianliang, ZHANG Yugui, et al. Anisotropic ultrasonic characteristics of coal pores and fractures under uniaxial loading[J]. Progress in Geophysics, 2018, 33(6): 2555-2562. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201806048.htm
    [10] 卢方超, 张玉贵, 江林华. 单轴加载煤孔裂隙各向异性核磁共振特征[J]. 煤田地质与勘探, 2018, 46(1): 66-72. doi: 10.3969/j.issn.1001-1986.2018.01.012

    LU Fangchao, ZHANG Yugui, JIANG Linhua. Anisotropic characteristics of nuclear magnetic resonance of pores and fractures in coal under uniaxial loading[J]. Coal Geology & Exploration, 2018, 46(1): 66-72. doi: 10.3969/j.issn.1001-1986.2018.01.012
    [11] 王小琼, 葛洪魁, 王文文, 等. 致密储层岩石应力各向异性与材料各向异性的实验研究[J]. 地球物理学报, 2021, 64(12): 4239-4251. doi: 10.6038/cjg2021P0040

    WANG Xiaoqiong, GE Hongkui, WANG Wenwen, et al. Experimental study on stress-related and matrix-related anisotropy in tight reservoirs[J]. Chinese Journal of Geophysics, 2021, 64(12): 4239-4251. doi: 10.6038/cjg2021P0040
    [12] 温晓贵, 张勋, 周建, 等. 考虑各向异性的原状软黏土微观结构变化机制研究[J]. 岩土力学, 2011, 32(1): 27-32, 38. doi: 10.3969/j.issn.1000-7598.2011.01.005

    WEN Xiaogui, ZHANG Xun, ZHOU Jian, et al. Changing mechanism of microstructure of intact soft clay considering anisotropy[J]. Rock and Soil Mechanics, 2011, 32(1): 27-32, 38. doi: 10.3969/j.issn.1000-7598.2011.01.005
    [13] 赵怡晴, 吴常贵, 金爱兵, 等. 热处理砂岩微观结构及力学性质试验研究[J]. 岩土力学, 2020, 41(7): 2233-2240. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007010.htm

    ZHAO Yiqing, WU Changgui, JIN Aibing, et al. Experimental study of sandstone microstructure and mechanical properties under high temperature[J]. Rock and Soil Mechanics, 2020, 41(7): 2233-2240. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007010.htm
    [14] 吕兆兴, 冯增朝, 赵阳升. 岩石的非均质性对其材料强度尺寸效应的影响[J]. 煤炭学报, 2007, 32(9): 917-920. doi: 10.3321/j.issn:0253-9993.2007.09.005

    LÜ Zhaoxing, FENG Zengchao, ZHAO Yangsheng. Influence of rock inhomogeneity on strength-size effect of rock materials[J]. Journal of China Coal Society, 2007, 32(9): 917-920. doi: 10.3321/j.issn:0253-9993.2007.09.005
    [15] 吴兴杰, 靖洪文, 苏海健, 等. 煤系地层砂岩抗拉强度及其矿物粒径效应[J]. 煤矿安全, 2016, 47(7): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201607013.htm

    WU Xingjie, JING Hongwen, SU Haijian, et al. Tensile strength of coal measures sandstone and its mineral particle size effect[J]. Safety in Coal Mines, 2016, 47(7): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201607013.htm
    [16] 崔智丽, 宫能平, 经来旺. 岩石非理想裂纹圆盘试件动态断裂韧性测试的有限元分析及试验研究[J]. 岩土力学, 2015, 36(3): 694-702. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503015.htm

    CUI Zhili, GONG Nengping, JING Laiwang. Experiment and finite element analysis of rock dynamic fracture toughness test on nonideal crack disc specimens[J]. Rock and Soil Mechanics, 2015, 36(3): 694-702. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503015.htm
    [17] 彭相愿, 高富强, 原贵阳, 等. 煤应变型冲击破坏尺寸效应声发射特征试验研究[J]. 采矿与岩层控制工程学报, 2023, 5(3): 64-76. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC202303007.htm

    PENG Xiangyuan, GAO Fuqiang, YUAN Guiyang, et al. Experimental study on the size effect of acoustic emission characteristics of coal strainbursts[J]. Journal of Mining and Strata Control Engineering, 2023, 5(3): 64-76. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC202303007.htm
    [18] 钱建固, 林志强. 双孔隙结构重塑非饱和膨胀土的抗剪强度特性[J]. 岩土工程学报, 2023, 45(3): 486-494. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202303005.htm

    QIAN Jiangu, LIN Zhiqiang. Shear strength behaviors of unsaturated expansive soils with dual-porosity structure[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 486-494. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202303005.htm
    [19] 金爱兵, 巨有, 孙浩, 等. 相变储能充填体孔隙结构及强度劣化机制研究[J]. 岩土力学, 2021, 42(10): 2623-2633. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110001.htm

    JIN Aibing, JU You, SUN Hao, et al. Pore structure and strength deterioration mechanism of phase change energy storage backfill[J]. Rock and Soil Mechanics, 2021, 42(10): 2623-2633. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110001.htm
    [20] 王相龙, 潘结南, 王凯, 等. 微米CT扫描尺度下构造煤微裂隙结构特征及其对渗透性的控制[J]. 煤炭学报, 2023, 48(3): 1325-1334. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202303018.htm

    WANG Xianglong, PAN Jienan, WANG Kai, et al. Characteristics of micro-CT scale pore-fracture of tectonic ally deformed coal and their controlling effect on permeability[J]. Journal of China Coal Society, 2023, 48(3): 1325-1334. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202303018.htm
    [21] 陈建, 程卫民, 郭立稳, 等. 基于CT和超声波技术联合分析的注水煤岩监测参数规律研究[J]. 采矿与安全工程学报, 2022, 39(4): 786-796. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202204016.htm

    CHEN Jian, CHENG Weimin, GUO Liwen, et al. Law of monitoring parameters of water injection coal based on the combined analysis of CT and ultrasonic technology[J]. Journal of Mining & Safety Engineering, 2022, 39(4): 786-796. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202204016.htm
    [22] LUO X, ZHANG Y, ZHOU H, et al. Pore structure characterization and seepage analysis of ionic rare earth orebodies based on computed tomography images[J]. International Journal of Mining Science and Technology, 2022, 32(2): 411-421. doi: 10.1016/j.ijmst.2022.02.006
    [23] 毛彦军, 陈曦, 范超男, 等. 基于CT三维重建的注水煤岩体裂隙扩展规律研究[J]. 岩土力学, 2022, 43(6): 1717-1726. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202206024.htm

    MAO Yanjun, CHEN Xi, FAN Chaonan, et al. Crack network evolution of water injection coal and rock mass by means of 3D reconstruction[J]. Rock and Soil Mechanics, 2022, 43(6): 1717-1726. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202206024.htm
    [24] SONG R, ZHENG L, WANG Y, et al. Effects of pore structure on sandstone mechanical properties based on micro-ct reconstruction model[J]. Advances in Civil Engineering, 2020, 2020(1): 1-21.
    [25] WANG G, QIN X J, HAN D Y, et al. Study on seepage and deformation characteristics of coal microstructure by 3D reconstruction of CT images at high temperatures[J]. International Journal of Mining Science and Technology, 2021, 31(2): 175-185. doi: 10.1016/j.ijmst.2020.11.003
    [26] ZHAO Y X, SONG H, LIU S, et al. Mechanical anisotropy of coal with considerations of realistic microstructures and external loading directions[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 116: 111-121. doi: 10.1016/j.ijrmms.2019.03.005
    [27] ZHAO Y X, LIU S, ZHAO G F, et al. Failure mechanisms in coal: dependence on strain rate and microstructure[J]. Journal of Geophysical Research Solid Earth, 2015, 119(9): 6924-6935.
    [28] 王桂华, 程远方, 梁何生. 岩屑显微硬度法确定地层力学参数[J]. 石油钻探技术, 2003, 31(3): 7-9. doi: 10.3969/j.issn.1001-0890.2003.03.003

    WANG Guihua, CHENG Yuanfang, LIANG Hesheng. A new method to determine the formation mechanical properties with cuttings microhardness[J]. Petroleum Drilling Techniques, 2003, 31(3): 7-9. doi: 10.3969/j.issn.1001-0890.2003.03.003
    [29] 高富强, 原贵阳, 娄金福, 等. 基于局部矿井刚度理论的冲击地压试验装置研制及应用[J]. 煤炭学报, 2023, 48(5): 1985-1995. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202305012.htm

    GAO Fuqiang, YUAN Guiyang, LOU Jinfu, et al. Development and application of coal burst experiment system based on local mine stiffness theory[J]. Journal of China Coal Society, 2023, 48(5): 1985-1995. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202305012.htm
    [30] WANG S, XU Y, ZHANG Y B, et al. Effects of sandstone mineral composition heterogeneity on crack initiation and propagation through a microscopic analysis technique[J]. International Journal of Rock Mechanics and Mining Sciences, 2023, 162: 105307. doi: 10.1016/j.ijrmms.2022.105307
    [31] 伍法权, 乔磊, 管圣功, 等. 小尺寸岩样单轴压缩试验尺寸效应研究[J]. 岩石力学与工程学报, 2021, 40(5): 865-873. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202105001.htm

    WU Faquan, QIAO Lei, GUAN Shenggong, et al. Uniaxial compression test study on size effect of small size rock samples[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(5): 865-873. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202105001.htm
    [32] 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003-3010. doi: 10.3321/j.issn:1000-6915.2005.17.001

    XIE Heping, JU Yang, LI Liyun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003-3010. doi: 10.3321/j.issn:1000-6915.2005.17.001
    [33] 谢和平, 彭瑞东, 鞠杨. 岩石变形破坏过程中的能量耗散分析[J]. 岩石力学与工程学报, 2004, 23(21): 3565-3570. doi: 10.3321/j.issn:1000-6915.2004.21.001

    XIE Heping, PENG Ruidong, JU Yang. Energy dissipation of rock deformation and fracture[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(21): 3565-3570. doi: 10.3321/j.issn:1000-6915.2004.21.001
    [34] 张志镇, 高峰. 单轴压缩下岩石能量演化的非线性特性研究[J]. 岩石力学与工程学报, 2012, 31(6): 1198-1207. doi: 10.3969/j.issn.1000-6915.2012.06.015

    ZHANG Zhizhen, GAO Feng. Research on nonlinear characteristics of rock energy evolution under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1198-1207. doi: 10.3969/j.issn.1000-6915.2012.06.015
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  8
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-11
  • 修回日期:  2024-02-24
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回