留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅埋隧道预应力锚固体承载效应模型实验研究

王彤彤 刘文龙 曹立雪 秦哲 张润昌

王彤彤, 刘文龙, 曹立雪, 秦哲, 张润昌. 浅埋隧道预应力锚固体承载效应模型实验研究[J]. 矿业科学学报, 2024, 9(3): 370-380. doi: 10.19606/j.cnki.jmst.2024.03.006
引用本文: 王彤彤, 刘文龙, 曹立雪, 秦哲, 张润昌. 浅埋隧道预应力锚固体承载效应模型实验研究[J]. 矿业科学学报, 2024, 9(3): 370-380. doi: 10.19606/j.cnki.jmst.2024.03.006
WANG Tongtong, LIU Wenlong, CAO Lixue, QIN Zhe, ZHANG Runchang. Model test study on bearing effect prestressing anchors in shallow buried tunnels[J]. Journal of Mining Science and Technology, 2024, 9(3): 370-380. doi: 10.19606/j.cnki.jmst.2024.03.006
Citation: WANG Tongtong, LIU Wenlong, CAO Lixue, QIN Zhe, ZHANG Runchang. Model test study on bearing effect prestressing anchors in shallow buried tunnels[J]. Journal of Mining Science and Technology, 2024, 9(3): 370-380. doi: 10.19606/j.cnki.jmst.2024.03.006

浅埋隧道预应力锚固体承载效应模型实验研究

doi: 10.19606/j.cnki.jmst.2024.03.006
基金项目: 

自然资源部滨海城市地下空间地质安全重点实验室基金 BHKF2022Y03

详细信息
    作者简介:

    王彤彤(1996—),男,山东诸城人,硕士研究生,主要从事地下岩土工程方面的研究工作。E-mail:1905636366@qq.com

  • 中图分类号: TU91/TD354

Model test study on bearing effect prestressing anchors in shallow buried tunnels

  • 摘要:

    预应力锚杆主动支护技术在隧道工程中的应用逐渐普及,对于浅埋大跨岩质隧道,其支护特性及作用机制尚未明确。为探究预应力锚杆支护体系下围岩的承载特性,以青岛地铁6号线某暗挖车站为工程背景,基于相似原理配制地层及支护结构模型实验材料,通过液压加载试验,探究了预应力锚杆及普通锚杆支护下锚固体的承载特性。结果表明:①预应力锚杆与围岩的相互作用形成了具有承载能力的锚固体,能够有效承担大部分上覆荷载。预应力锚杆的应用使得隧道失稳破坏的预警荷载值提高了42.8%,同时极限荷载值也提高了41.2%。②在上覆加载过程中,预应力锚杆经历了紧密锚固持荷阶段和脱锚卸荷阶段,衬砌经历了应变累积、应变突增和应变释放3个阶段。③较普通锚杆,主动支护下预应力锚杆与岩体间的受力协同性好,无轴力突变现象,锚杆的支护性能得到充分的利用,有效抑制了裂隙的发育,提高了隧道的整体稳定性。

  • 图  1  应力补偿机理

    Figure  1.  Stress compensation mechanism

    图  2  锚固体几何模型

    Figure  2.  Geometric model of an anchor solid

    图  3  锚固体力学模型

    Fn—锚固体受到的垂直荷载;pi—锚杆的支护强度

    Figure  3.  Mechanical model of an anchor solid

    图  4  太沙基浅埋隧道围岩压力计算示意图

    Figure  4.  Schematic of rock pressure calculation for shallow buried tunnels at Terzaghi base

    图  5  工程地质纵剖面

    Figure  5.  Geological longitudinal section

    图  6  试样制备流程

    Figure  6.  Sample preparation process

    图  7  锚杆相似模型

    Figure  7.  Analogous anchor model

    图  8  模型试验台

    Figure  8.  Model test bench

    图  9  监测仪器及测点布设

    Figure  9.  Layout of monitoring equipment and measurement points

    图  10  不同上覆加载作用下围岩压力变化

    Figure  10.  Pressure variation of surrounding rock under diverse overburden loads

    图  11  不同上覆荷载作用下锚杆轴力变化曲线

    Figure  11.  Anchor shaft force variation under different overburden load

    图  12  上覆荷载作用下衬砌应变变化曲线

    Figure  12.  Variation of lining strain under overburden loads

    图  13  上覆荷载作用下锚固体失效判据

    Figure  13.  Overburden load failure criteria for anchor solids

    图  14  不同上覆荷载作用下数值散斑云图

    Figure  14.  Numerical scatter cloud influenced by overburden load

    图  15  上覆加载作用下隧道围岩宏观破坏特征

    Figure  15.  Macroscopic damage characteristics of tunnel's surrounding rock under overburden loading

    表  1  车站地质参数

    Table  1.   Geological parameters of the station

    地层 弹性模量E/MPa 泊松比μ 黏聚力c/MPa 内摩擦角φ/(°) 密度ρ/(kg·m-3)
    微风化花岗岩 2 000 0.34 0.40 47 2 400
    下载: 导出CSV

    表  2  相似材料正交试验

    Table  2.   Orthogonal test of similar materials

    方案 砂胶比(骨料/胶结材料) 水膏比(水泥/石膏) 含水率/%
    1 5∶1 2∶1 8
    2 5∶1 1∶1 10
    3 5∶1 1∶2 12
    4 6∶1 2∶1 8
    5 6∶1 1∶1 10
    6 6∶1 1∶2 12
    7 7∶1 2∶1 8
    8 7∶1 1∶1 10
    9 7∶1 1∶2 12
    下载: 导出CSV

    表  3  抗压强度敏感性分析

    Table  3.   Sensitivity analysis of compressive strength

    因素 比例 抗压强度/MPa 强度极差/MPa
    砂胶比 5∶1 2.372 0.649
    6∶1 1.938
    7∶1 1.723
    水膏比 1∶2 2.287 0.487
    1∶1 2.008
    2∶1 1.800
    含水率/% 8 2.149 0.336
    10 1.813
    12 2.071
    下载: 导出CSV

    表  4  单轴抗拉强度敏感性分析

    Table  4.   Sensitivity analysis of uniaxial tensile strength

    因素 比例 抗拉强度/MPa 强度极差/MPa
    砂胶比 5∶1 0.272 0.122
    6∶1 0.195
    7∶1 0.150
    水膏比 1∶2 0.221 0.02
    1∶1 0.201
    2∶1 0.202
    含水率/% 8 0.203 0.004
    10 0.207
    12 0.206
    下载: 导出CSV

    表  5  三轴抗压强度敏感性分析

    Table  5.   Sensitivity analysis of triaxial compressive strength

    因素 比例 抗压强度/MPa (围压0.2 MPa) 强度极差/MPa 抗压强度/MPa (围压0.4 MPa) 强度极差/MPa
    砂胶比 5∶1 3.057 0.414 3.863 0.486
    6∶1 2.647 3.543
    7∶1 2.643 3.377
    水膏比 1∶2 3.153 0.560 3.880 0.460
    1∶1 2.700 3.637
    2∶1 2.593 3.420
    含水率/% 8 2.753 0.180 3.610 0.313
    10 2.707 3.430
    12 2.887 3.743
    下载: 导出CSV

    表  6  相似材料力学参数

    Table  6.   Mechanical parameters of similar materials

    容重/(N·m-3) 抗压强度/MPa 抗拉强度 内摩擦角
    设计参数 23 1.91 0.229 MPa 47°
    试验参数 23 1.91 0.223 MPa 47.4°
    相对误差 2.6% 0.8%
    下载: 导出CSV

    表  7  上覆荷载作用下隧道失稳预警值、极限值

    Table  7.   Warning value and limit value of tunnel instability under overlying loading kN

    工况 预警荷载值 极限荷载值
    预应力锚杆主动支护 500 600
    普通锚杆被动支护 350 425
    下载: 导出CSV
  • [1] 汪波, 喻炜, 訾信, 等. 基于统一强度理论的围岩-锚杆(索)弹塑性耦合分析[J]. 岩石力学与工程学报, 2023, 42(11): 2613-2627. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202311002.htm

    WANG Bo, YU Wei, ZI Xin, et al. Elastoplastic coupling analysis of surrounding rock-anchor bolt (cable) based on unified strength theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(11): 2613-2627. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202311002.htm
    [2] 朱珍德, 舒晓云, 陈卫忠, 等. 一种改进的中空注浆锚杆连接段螺纹参数优化分析[J]. 煤炭学报, 2022, 47(6): 2300-2310. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202206015.htm

    ZHU Zhende, SHU Xiaoyun, CHEN Weizhong, et al. Optimization analysis on thread connection parameters of an improved hollow grouting bolt[J]. Journal of China Coal Society, 2022, 47(6): 2300-2310. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202206015.htm
    [3] 陈昌富, 朱世民, 高傑, 等. 考虑注浆压力影响锚-土界面剪切蠕变Kriging模型[J]. 岩土工程学报, 2019, 41(S1): 125-128. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1033.htm

    CHEN Changfu, ZHU Shimin, GAO Jie, et al. Kriging model of shear creep of anchor-soil interface considering grouting pressure[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 125-128. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1033.htm
    [4] 叶新宇, 彭锐, 马新岩, 等. 压密效应对新型压密注浆土钉的强化研究[J]. 岩土工程学报, 2021, 43(9): 1649-1656, 1738. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202109014.htm

    YE Xinyu, PENG Rui, MA Xinyan, et al. Enhancement of compaction grouting on a compaction-grouted soil nail in sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1649-1656, 1738. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202109014.htm
    [5] 陶志刚, 周子琮, 杨晓杰, 等. 富水断层带隧道变形力学机制及双梯度注浆NPR补偿对策[J]. 矿业科学学报, 2023, 8(6): 768-779. doi: 10.19606/j.cnki.jmst.2023.06.004

    TAO Zhigang, ZHOU Zicong, YANG Xiaojie, et al. Mechanics of tunnel deformation in water-rich fault zone and double-gradient grouting NPR compensation countermeasures[J]. Journal of Mining Science and Technology, 2023, 8(6): 768-779. doi: 10.19606/j.cnki.jmst.2023.06.004
    [6] 罗春雨, 廖杭, 余涛, 等. 考虑锚杆预应力作用下隧道围岩力学分析及参数设计[J/OL]. 铁道标准设计, 1-9[2024-01-18].

    LUO Chunyu, LIAO Hang, YU Tao, et al. Mechanical analysis and parameter design of tunnel surrounding rock considering prestress of bolt[J/OL]. Railway Standard Design, 1-9[2024-01-18].
    [7] 王洪涛, 高广龙, 张红军, 等. 全长预应力锚注支护下深部巷道控制效果对比研究[J]. 矿业科学学报, 2024, 9(1): 53-65. doi: 10.19606/j.cnki.jmst.2024.01.006

    WANG Hongtao, GAO Guanglong, ZHANG Hongjun, et al. Comparative study on control effect of deep roadway under full-length prestressed bolt-grouting support[J]. Journal of Mining Science and Technology, 2024, 9(1): 53-65. doi: 10.19606/j.cnki.jmst.2024.01.006
    [8] 余涛, 方勇, 姚志刚, 等. 隧道预应力锚杆锚固结构承载效应及围岩力学分析[J]. 岩土工程学报, 2022, 44(6): 1069-1077. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202206011.htm

    YU Tao, FANG Yong, YAO Zhigang, et al. Bearing effect of prestressed bolt-anchored structures and mechanical analysis of surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1069-1077. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202206011.htm
    [9] 于远祥, 姚尧, 王京滨, 等. 杆岩耦合作用下深埋隧洞围岩稳定性主控因素及支护优化研究[J]. 现代隧道技术, 2021, 58(1): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD202101004.htm

    YU Yuanxiang, YAO Yao, WANG Jingbin, et al. Study on main controlling factors of surrounding rock stability and support optimization of deep-buried tunnels under the coupling action of anchor bolts and rocks[J]. Modern Tunnelling Technology, 2021, 58(1): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD202101004.htm
    [10] LI P F, CHEN Y, HUANG J L, et al. Design principles of prestressed anchors for tunnels considering bearing arch effect[J]. Computers and Geotechnics, 2023, 156: 105307. doi: 10.1016/j.compgeo.2023.105307
    [11] LI G, HU Y, TIAN S M, et al. Analysis of deformation control mechanism of prestressed anchor on jointed soft rock in large cross-section tunnel[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(12): 9089-9103. doi: 10.1007/s10064-021-02470-5
    [12] WU D Y, LI N Y, HU M H, et al. Study on formation mechanism of pre-stressed anchor pressure arch based on safe co-mining of deep coal and gas[J]. Sustainability, 2023, 15(4): 3004. doi: 10.3390/su15043004
    [13] GUO X W, ZHENG X G, LI P, et al. Full-stress anchoring technology and application of bolts in the coal roadway[J]. Energies, 2021, 14(22): 7475. doi: 10.3390/en14227475
    [14] 杨仁树, 李永亮, 王茂盛, 等. 预应力锚索剪切力学特性试验研究[J]. 中国矿业大学学报, 2018, 47(6): 1166-1174. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201806002.htm

    YANG Renshu, LI Yongliang, WANG Maosheng, et al. Experimental study of shear mechanical properties of prestressed cable bolts[J]. Journal of China University of Mining & Technology, 2018, 47(6): 1166-1174. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201806002.htm
    [15] BOBET A, EINSTEIN H H. Tunnel reinforcement with rockbolts[J]. Tunnelling and Underground Space Technology, 2011, 26(1): 100-123. doi: 10.1016/j.tust.2010.06.006
    [16] 勾攀峰, 张振普, 韦四江. 不同水平应力作用下巷道围岩破坏特征的物理模拟试验[J]. 煤炭学报, 2009, 34(10): 1328-1332. doi: 10.3321/j.issn:0253-9993.2009.10.006

    GOU Panfeng, ZHANG Zhenpu, WEI Sijiang. Physical simulation test of damage character of surrounding rock under different levels of the horizontal stress[J]. Journal of China Coal Society, 2009, 34(10): 1328-1332. doi: 10.3321/j.issn:0253-9993.2009.10.006
    [17] 韦四江, 勾攀峰. 巷道围岩锚固体变形破坏特征的试验研究[J]. 采矿与安全工程学报, 2013, 30(2): 199-204. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201302006.htm

    WEI Sijiang, GOU Panfeng. Experimental study on deformation and failure characteristics of anchored body in roadway surrounding rock[J]. Journal of Mining & Safety Engineering, 2013, 30(2): 199-204. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201302006.htm
    [18] 张明建, 镐振, 郜进海, 等. 不同水平应力作用下巷道围岩破坏特征研究[J]. 煤炭科学技术, 2014, 42(3): 4-7. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201403002.htm

    ZHANG Mingjian, HAO Zhen, GAO Jinhai, et al. Study on failure features of surrounding rock in mine gateway under different horizontal stress[J]. Coal Science and Technology, 2014, 42(3): 4-7. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201403002.htm
    [19] HE M C, WANG Q. Excavation compensation method and key technology for surrounding rock control[J]. Engineering Geology, 2022, 307: 106784. doi: 10.1016/j.enggeo.2022.106784
    [20] 孙晓明, 张勇, 何满潮, 等. 深部井巷工程高预应力NPR耦合支护技术[J]. 矿业科学学报, 2023, 8(1): 50-65. doi: 10.19606/j.cnki.jmst.2023.01.005

    SUN Xiaoming, ZHANG Yong, HE Manchao, et al. Research of high pre-stress NPR support technology in deep shaft roadway engineering[J]. Journal of Mining Science and Technology, 2023, 8(1): 50-65. doi: 10.19606/j.cnki.jmst.2023.01.005
    [21] HOU L L, ZHANG Q, DU Y L. Width estimation of hidden cracks in tunnel lining based on time-frequency analysis of GPR data and back propagation neural network optimized by genetic algorithm[J]. Automation in Construction, 2024, 162: 105394. doi: 10.1016/j.autcon.2024.105394
  • 加载中
图(15) / 表(7)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  7
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-23
  • 修回日期:  2024-04-11
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回