留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热损伤花岗岩力学劣化特性及损伤演化规律研究

周韬 范永林 陈家嵘 周昌台

周韬, 范永林, 陈家嵘, 周昌台. 热损伤花岗岩力学劣化特性及损伤演化规律研究[J]. 矿业科学学报, 2024, 9(3): 351-360. doi: 10.19606/j.cnki.jmst.2024.03.004
引用本文: 周韬, 范永林, 陈家嵘, 周昌台. 热损伤花岗岩力学劣化特性及损伤演化规律研究[J]. 矿业科学学报, 2024, 9(3): 351-360. doi: 10.19606/j.cnki.jmst.2024.03.004
ZHOU Tao, FAN Yonglin, CHEN Jiarong, ZHOU Changtai. Study on the mechanical degradation characteristics and damage evolution of thermally damaged granite[J]. Journal of Mining Science and Technology, 2024, 9(3): 351-360. doi: 10.19606/j.cnki.jmst.2024.03.004
Citation: ZHOU Tao, FAN Yonglin, CHEN Jiarong, ZHOU Changtai. Study on the mechanical degradation characteristics and damage evolution of thermally damaged granite[J]. Journal of Mining Science and Technology, 2024, 9(3): 351-360. doi: 10.19606/j.cnki.jmst.2024.03.004

热损伤花岗岩力学劣化特性及损伤演化规律研究

doi: 10.19606/j.cnki.jmst.2024.03.004
基金项目: 

国家自然科学基金 52274090

国家自然科学基金 52192625

广东省自然科学基金 2022A1515010827

深圳市自然科学基金 JCYJ20210324093400001

广东省“珠江人才计划”引进创新创业团队 2019ZT08G315

详细信息
    作者简介:

    周韬(1986—),男,湖南浏阳人,副教授,硕士生导师,主要从事岩石动力学和深部岩体力学等方面的研究工作。Tel:15219499098,E-mail:tzhou@szu.edu.cn

    通讯作者:

    周昌台(1988—),男,河南滑县人,副研究员,主要从事岩石动力学和深部岩体力学方面的研究工作。Tel:17327728836,E-mail:chouchangtai@126.com

  • 中图分类号: TD315

Study on the mechanical degradation characteristics and damage evolution of thermally damaged granite

  • 摘要:

    深部矿产开采面临的高地温环境导致岩石产生热损伤,易诱发深部工程地质灾害,探究高温后岩石力学性能劣化特性与损伤演化规律对深部高地温环境下的岩体工程具有重要意义。通过将花岗岩进行常温至1 200 ℃范围内的温度处理,采用光学显微镜观测,探究了花岗岩试样在不同高温处理后杨氏模量和抗压强度的劣化特性,从微观角度分析热损伤花岗岩的内部裂纹和损伤演化规律。试验结果表明,高温处理将显著降低花岗岩的力学性能;岩石抗压强度和杨氏模量随着处理温度的升高而降低,裂纹发育程度随着温度的升高而增大;岩石力学性能与内部裂隙结构的发育程度高度相关,花岗岩在不同温度处理后的裂纹密度同抗压强度之间存在幂函数关系,裂纹密度能很好地反应花岗岩的热损伤程度。

  • 图  1  花岗岩试样

    Figure  1.  Granite specimens

    图  2  不同温度处理后花岗岩试样的外观

    Figure  2.  Appearance of granite specimens after different temperature treatment

    图  3  试样微观结构观察的处理流程

    Figure  3.  Specimen handling procedures for microstructure observation

    图  4  裂纹密度获取流程

    Figure  4.  Flowchart of crack density acquisition

    图  5  花岗岩在不同温度处理后的杨氏模量

    Figure  5.  Young's modulus of granite after different temperature treatments

    图  6  花岗岩在不同温度处理后的抗压强度

    Figure  6.  Compressive strength of granite after different temperature treatments

    图  7  花岗岩在多种温度处理后的显微图像(裂纹与孔洞区域的蓝色物质为环氧树脂铸体剂)

    Figure  7.  Microscopic images of granite after treatment at various temperatures (the blue material in the area of cracks and holes is epoxy resin casting agent)

    图  8  由花岗岩薄片统计的裂纹密度

    Figure  8.  Crack densities statistically determined from granite flakes

    图  9  裂纹密度和抗压强度之间的关系

    Figure  9.  Relationship between crack density and compressive strength

    图  10  损伤变量随温度的变化

    Figure  10.  Variation of damage variables with temperature

    表  1  花岗岩物理、力学参数

    Table  1.   Physical and mechanical parameters of granite

    重度/(kN·m-3) 波速/(m·s-1) 孔隙率/% 抗压强度/MPa 抗拉强度/MPa 杨氏模量/GPa
    26.06 3 252 0.98 149.9 8.8 41
    下载: 导出CSV
  • [1] GALLUP D L. Production engineering in geothermal technology: a review[J]. Geothermics, 2009, 38(3): 326-334. doi: 10.1016/j.geothermics.2009.03.001
    [2] 齐消寒, 刘阳, 杨雪松, 等. 不同预制温度煤岩冻融损伤及渗流特性研究[J]. 矿业科学学报, 2023, 8(4): 474-486. doi: 10.19606/j.cnki.jmst.2023.04.004

    QI Xiaohan, LIU Yang, YANG Xuesong, et al. Experimental study on freeze-thaw damage and seepage characteristics of coal rock at different prefabrication temperatures[J]. Journal of Mining Science and Technology, 2023, 8(4): 474-486. doi: 10.19606/j.cnki.jmst.2023.04.004
    [3] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(5): 1283-1305. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201905002.htm

    XIE Heping. Research review of the state key research development program of China: deep rock mechanics and mining theory[J]. Journal of China Coal Society, 2019, 44(5): 1283-1305. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201905002.htm
    [4] GOMAH M E, LI G C, SUN C L, et al. Macroscopic and microscopic research on Egyptian granodiorite behavior exposed to the various heating and cooling strategies[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8(5): 158. doi: 10.1007/s40948-022-00457-4
    [5] 高万里, 赵惊涛, 王化伟. 高温作用下干热岩岩石物理实验及岩石物理建模研究[J]. 矿业科学学报, 2023, 8(6): 758-767. doi: 10.19606/j.cnki.jmst.2023.06.003

    GAO Wanli, ZHAO Jingtao, WANG Huawei. Rock physics experiment and rock physical modeling of hot dry rock under high temperature[J]. Journal of Mining Science and Technology, 2023, 8(6): 758-767. doi: 10.19606/j.cnki.jmst.2023.06.003
    [6] 庞忠和, 罗霁, 程远志, 等. 中国深层地热能开采的地质条件评价[J]. 地学前缘, 2020, 27(1): 134-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001018.htm

    PANG Zhonghe, LUO Ji, CHENG Yuanzhi, et al. Evaluation of geological conditions for the development of deep geothermal energy in China[J]. Earth Science Frontiers, 2020, 27(1): 134-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001018.htm
    [7] PERKINS G. Underground coal gasification-Part Ⅰ: Field demonstrations and process performance[J]. Progress in Energy and Combustion Science, 2018, 67: 158-187. doi: 10.1016/j.pecs.2018.02.004
    [8] 赵明东, 董东林, 田康. 煤炭地下气化覆岩温度场和裂隙场变化机制模拟研究[J]. 矿业科学学报, 2017, 2(1): 1-6. http://kykxxb.cumtb.edu.cn/article/id/41

    ZHAO Mingdong, DONG Donglin, TIAN Kang. Change mechanism simulation study of the overlying strata temperature field and fracture field in UCG[J]. Journal of Mining Science and Technology, 2017, 2(1): 1-6. http://kykxxb.cumtb.edu.cn/article/id/41
    [9] 苏发强, 邓启超, 武俊博, 等. 基于不同气化通道类型的地下气化煤体破裂监测及扩展规律[J]. 煤炭学报, 2023, 48(10): 3845-3858. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202310017.htm

    SU Faqiang, DENG Qichao, WU Junbo, et al. Study on fracturing monitoring and expansion law of underground gasification coal based on different gasification channel types[J]. Journal of China Coal Society, 2023, 48(10): 3845-3858. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202310017.htm
    [10] 胡少华, 章光, 张淼, 等. 热处理北山花岗岩变形特性试验与损伤力学分析[J]. 岩土力学, 2016, 37(12): 3427-3436, 3454. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612011.htm

    HU Shaohua, ZHANG Guang, ZHANG Miao, et al. Deformation characteristics tests and damage mechanics analysis of Beishan granite after thermal treatment[J]. Rock and Soil Mechanics, 2016, 37(12): 3427-3436, 3454. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612011.htm
    [11] 吴星辉, 蔡美峰, 任奋华, 等. 不同热处理作用下花岗岩纵波波速和导热能力的演化规律分析[J]. 岩石力学与工程学报, 2022, 41(3): 457-467. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202203003.htm

    WU Xinghui, CAI Meifeng, REN Fenhua, et al. Evolutions of P-wave velocity and thermal conductivity of granite under different thermal treatments[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(3): 457-467. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202203003.htm
    [12] 黄彦华, 陶然, 陈笑, 等. 高温后花岗岩断裂特性及热裂纹演化规律研究[J]. 岩土工程学报, 2023, 45(4): 739-747. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202304009.htm

    HUANG Yanhua, TAO Ran, CHEN Xiao, et al. Fracture behavior and thermal cracking evolution law of granite specimens after high-temperature treatment[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 739-747. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202304009.htm
    [13] YAVUZ H, DEMIRDAG S, CARAN S. Thermal effect on the physical properties of carbonate rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(1): 94-103. doi: 10.1016/j.ijrmms.2009.09.014
    [14] 郭辰光, 孙瑜, 岳海涛, 等. 激光辐照热裂破岩规律及力学性能[J]. 煤炭学报, 2022, 47(4): 1734-1742. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202204030.htm

    GUO Chenguang, SUN Yu, YUE Haitao, et al. Law and mechanics of thermal cracking of rock by laser irradiation[J]. Journal of China Coal Society, 2022, 47(4): 1734-1742. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202204030.htm
    [15] SHAO S S, RANJITH P G, WASANTHA P L P, et al. Experimental and numerical studies on the mechanical behaviour of Australian Strathbogie granite at high temperatures: an application to geothermal energy[J]. Geothermics, 2015, 54: 96-108. doi: 10.1016/j.geothermics.2014.11.005
    [16] 陈家嵘, 周昌台, 周韬, 等. 压剪荷载下含单一裂隙砂岩的应变演化与破坏特征研究[J]. 岩石力学与工程学报, 2023, 42(7): 1743-1758. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202307014.htm

    CHEN Jiarong, ZHOU Changtai, ZHOU Tao, et al. Experimental study on strain evolution and failure behavior of sandstone containing a single pre-existing flaw under compressive-shear loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(7): 1743-1758. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202307014.htm
    [17] BOBET A, EINSTEIN H H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(7): 863-888. doi: 10.1016/S0148-9062(98)00005-9
    [18] 张森, 舒彪, 梁铭, 等. 不同冷却方式下高温花岗岩细观损伤量化和机理分析[J]. 煤田地质与勘探, 2022, 50(2): 106-114. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202202013.htm

    ZHANG Sen, SHU Biao, LIANG Ming, et al. Quantification and mechanism analysis of meso-damage of high-temperature granite under different cooling modes[J]. Coal Geology & Exploration, 2022, 50(2): 106-114. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202202013.htm
    [19] SHI X C, GAO L Y, WU J, et al. Effects of cyclic heating and water cooling on the physical characteristics of granite[J]. Energies, 2020, 13(9): 2136. doi: 10.3390/en13092136
    [20] ZUO J P, XIE H P, ZHOU H W, et al. SEM in situ investigation on thermal cracking behaviour of Pingdingshan sandstone at elevated temperatures[J]. Geophysical Journal International, 2010, 181(2): 593-603.
    [21] GAO J W, XI Y, FAN L F, et al. Real-time visual analysis of the microcracking behavior of thermally damaged granite under uniaxial loading[J]. Rock Mechanics and Rock Engineering, 2021, 54(12): 6549-6564. doi: 10.1007/s00603-021-02639-0
    [22] 杨欣欣, 郤保平, 何水鑫, 等. 砂岩热冲击破裂特征及其孔隙连通性分析[J]. 岩土工程学报, 2022, 44(10): 1925-1934. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202210019.htm

    YANG Xinxin, XI Baoping, HE Shuixin, et al. Fracture characteristics and pore connectivity of sandstone under thermal shock[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1925-1934. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202210019.htm
    [23] GIBB F G F. High-temperature, very deep, geological disposal: a safer alternative for high-level radioactive waste? [J]. Waste Management, 1999, 19(3): 207-211. doi: 10.1016/S0956-053X(99)00050-1
    [24] 王亚超, 窦斌, 喻勇, 等. 不同冷却方式下高温花岗岩巴西劈裂及声发射特性试验研究[J]. 地质科技通报, 2022, 41(3): 200-207. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202203021.htm

    WANG Yachao, DOU Bin, YU Yong, et al. Experimental study on Brazilian split test and acoustic emission characteristics of high temperature granite under different cooling methods[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 200-207. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202203021.htm
    [25] 贾蓬, 杨其要, 刘冬桥, 等. 高温花岗岩水冷却后物理力学特性及微观破裂特征[J]. 岩土力学, 2021, 42(6): 1568-1578. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106011.htm

    JIA Peng, YANG Qiyao, LIU Dongqiao, et al. Physical and mechanical properties and related microscopic characteristics of high-temperature granite after water-cooling[J]. Rock and Soil Mechanics, 2021, 42(6): 1568-1578. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106011.htm
    [26] 马鸿文, 苏双青, 王芳, 等. 钾长石分解反应热力学与过程评价[J]. 现代地质, 2007, 21(2): 426-434. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200702030.htm

    MA Hongwen, SU Shuangqing, WANG Fang, et al. Thermodynamic Analysis on Decomposition reactions of Potassium Feldspar and Evaluation of the Processes[J]. Geoscience, 2007, 21(2): 426-434. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200702030.htm
    [27] ZHOU C S, LI K F, PANG X Y. Geometry of crack network and its impact on transport properties of concrete[J]. Cement and Concrete Research, 2012, 42(9): 1261-1272. doi: 10.1016/j.cemconres.2012.05.017
    [28] WANG F, KONIETZKY H, FRVHWIRT T, et al. Impact of cooling on fracturing process of granite after high-speed heating[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 125: 104155. doi: 10.1016/j.ijrmms.2019.104155
    [29] 张蕾, 李海兵, 孙知明, 等. 断裂熔融作用中单质铁的形成及其指示的孕震环境[J]. 岩石学报, 2019, 35(6): 1875-1891. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201906015.htm

    ZHANG Lei, LI Haibing, SUN Zhiming, et al. Metallic iron formed by melting and its seismogenic setting indication[J]. Acta Petrologica Sinica, 2019, 35(6): 1875-1891. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201906015.htm
    [30] TAYLOR D. The thermal expansion behaviour of the framework silicates[J]. Mineralogical Magazine, 1972, 38(297): 593-604. doi: 10.1180/minmag.1972.038.297.08
    [31] GLOVER P W J, BAUD P, DAROT M, et al. α/β phase transition in quartz monitored using acoustic emissions[J]. Geophysical Journal International, 1995, 120(3): 775-782. doi: 10.1111/j.1365-246X.1995.tb01852.x
    [32] KESHAVARZ M, PELLET F L, LORET B. Damage and changes in mechanical properties of a gabbro thermally loaded up to 1000℃[J]. Pure and Applied Geophysics, 2010, 167(12): 1511-1523. doi: 10.1007/s00024-010-0130-0
    [33] 赵亚永, 魏凯, 周佳庆, 等. 三类岩石热损伤力学特性的试验研究与细观力学分析[J]. 岩石力学与工程学报, 2017, 36(1): 142-151. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201701012.htm

    ZHAO Yayong, WEI Kai, ZHOU Jiaqing, et al. Laboratory study and micromechanical analysis of mechanical behaviors of three thermally damaged rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(1): 142-151. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201701012.htm
    [34] ZHANG F, ZHANG Y H, YU Y D, et al. Influence of cooling rate on thermal degradation of physical and mechanical properties of granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 129: 104285. doi: 10.1016/j.ijrmms.2020.104285
    [35] WU X G, HUANG Z W, CHENG Z H, et al. Effects of cyclic heating and LN2-cooling on the physical and mechanical properties of granite[J]. Applied Thermal Engineering, 2019, 156: 99-110. doi: 10.1016/j.applthermaleng.2019.04.046
    [36] 徐小丽, 高峰, 高亚楠, 等. 高温后花岗岩力学性质变化及结构效应研究[J]. 中国矿业大学学报, 2008, 37(3): 402-406. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200803025.htm

    XU Xiaoli, GAO Feng, GAO Yanan, et al. Effect of high temperatures on the mechanical characteristics and crystal structure of granite[J]. Journal of China University of Mining & Technology, 2008, 37(3): 402-406. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200803025.htm
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  11
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-24
  • 修回日期:  2024-02-16
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回