留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CT扫描的CO2相变致裂煤裂隙演化特征

刘高峰 关文博 张震 李宝林 刘欢 司念

刘高峰, 关文博, 张震, 李宝林, 刘欢, 司念. 基于CT扫描的CO2相变致裂煤裂隙演化特征[J]. 矿业科学学报, 2024, 9(3): 342-350. doi: 10.19606/j.cnki.jmst.2024.03.003
引用本文: 刘高峰, 关文博, 张震, 李宝林, 刘欢, 司念. 基于CT扫描的CO2相变致裂煤裂隙演化特征[J]. 矿业科学学报, 2024, 9(3): 342-350. doi: 10.19606/j.cnki.jmst.2024.03.003
LIU Gaofeng, GUAN Wenbo, ZHANG Zhen, LI Baolin, LIU Huan, SI Nian. Evolution characteristics on coal fractures induced with CO2 phase transition fracturing based on CT scanning[J]. Journal of Mining Science and Technology, 2024, 9(3): 342-350. doi: 10.19606/j.cnki.jmst.2024.03.003
Citation: LIU Gaofeng, GUAN Wenbo, ZHANG Zhen, LI Baolin, LIU Huan, SI Nian. Evolution characteristics on coal fractures induced with CO2 phase transition fracturing based on CT scanning[J]. Journal of Mining Science and Technology, 2024, 9(3): 342-350. doi: 10.19606/j.cnki.jmst.2024.03.003

基于CT扫描的CO2相变致裂煤裂隙演化特征

doi: 10.19606/j.cnki.jmst.2024.03.003
基金项目: 

国家自然科学基金 42230814

国家自然科学基金 42372204

河南省高等学校重点科研项目 24B170005

河南省科技攻关项目 242102320365

详细信息
    作者简介:

    刘高峰(1982—),男,河南沁阳人,博士,副教授,博士生导师,主要从事瓦斯地质与煤层气开发等方面的研究工作。Tel:13639624360,E-mail:liugaofeng82@163.com

  • 中图分类号: TD712

Evolution characteristics on coal fractures induced with CO2 phase transition fracturing based on CT scanning

  • 摘要:

    为进一步揭示CO2相变致裂煤的裂隙改造机理,开展了CO2相变致裂煤体实验,基于CT扫描和三维裂隙重构,分析了CO2相变致裂前后的煤样内部裂隙结构参数,查明了CO2相变致裂煤的三维裂隙结构演化特征。结果表明,致裂后煤样的裂隙总数量减少,裂隙总体积和裂隙总表面积增加;CO2相变致裂产生了裂隙扩张转化效应,在致裂压力的扩张作用下,小尺度裂隙转化为更大尺度的裂隙;长度小于1 000 μm的裂隙数量减少、裂隙体积和表面积明显减小,长度大于1 000 μm的裂隙体积和表面积明显增大,且裂隙之间扩张贯通而引起其数量减少;CO2相变致裂大幅度改善了煤体三维裂隙的连通性,有利于气体的运移和产出。此研究为CO2相变致裂效果提供新的分析评价方法,也可为其他非常规天然气储层及其改造的裂隙演化特征研究提供参考和借鉴。

  • 图  1  CO2相变致裂实验装置

    Figure  1.  Experimental device of CO2 phase transition fracturing

    图  2  煤体CT扫描装置

    Figure  2.  CT scanning device for coal

    图  3  CO2相变致裂煤的不同角度纵切面二值化

    Figure  3.  Binarization of longitudinal sections with different angles in the coal sample with CO2-PTF

    图  4  CO2相变致裂同一煤样不同角度三维裂隙重构

    Figure  4.  3D fracture reconstruction of the coal samples before and after CO2-PTF

    图  5  三维裂隙结构特征

    Figure  5.  3D fracture structure characteristics

    图  6  CO2相变致裂煤的裂隙数量、体积与表面积变化

    Figure  6.  Number, volume, and surface area variation of fracture in the coal samples before and after CO2-PTF

    图  7  CO2相变致裂煤的裂隙演化示意图

    Figure  7.  Schematic diagram of fracture evolution in coal induced with CO2-PTF

    表  1  煤样工业分析

    Table  1.   Proximate analysis of coal %

    空气干燥基水分 空气干燥基灰分 干燥无灰基挥发分 最大镜质体反射率
    0.97 10.03 24.91 1.22
    下载: 导出CSV

    表  2  煤样裂隙结构参数

    Table  2.   Fractures structurale parameters of for coal samples

    煤样 裂隙总数量/条 裂隙总体积/mm3 裂隙总表面积/mm2
    原始煤样 129 500 564.72 24 630.50
    致裂煤样 49 313 2 782.58 36 838.00
    下载: 导出CSV
  • [1] 李勇, 胡海涛, 王延斌, 等. 煤层气井低产原因及二次改造技术应用分析[J]. 矿业科学学报, 2022, 7(1): 55-70. doi: 10.19606/j.cnki.jmst.2022.01.006

    LI Yong, HU Haitao, WANG Yanbin, et al. Analysis of low production coalbed methane wells and application of secondary reconstruction technologies[J]. Journal of Mining Science and Technology, 2022, 7(1): 55-70. doi: 10.19606/j.cnki.jmst.2022.01.006
    [2] 齐消寒, 王品, 侯双荣, 等. 不同功率微波预处理煤样增透效果及能量变化研究[J]. 矿业科学学报, 2024, 9(1): 66-76. doi: 10.19606/j.cnki.jmst.2024.01.007

    QI Xiaohan, WANG Pin, HOU Shuangrong, et al. Study on the effect of penetration enhancement and energy change of coal samples pretreated with different microwave powers[J]. Journal of Mining Science and Technology, 2024, 9(1): 66-76. doi: 10.19606/j.cnki.jmst.2024.01.007
    [3] 袁亮. 煤矿典型动力灾害风险判识及监控预警技术"十三五" 研究进展[J]. 矿业科学学报, 2021, 6(1): 1-8. doi: 10.19606/j.cnki.jmst.2021.01.001

    YUAN Liang. Risk identification, monitoring and early warning of typical coal mine dynamic disasters during the 13th Five-Year Plan period[J]. Journal of Mining Science and Technology, 2021, 6(1): 1-8. doi: 10.19606/j.cnki.jmst.2021.01.001
    [4] 李勇, 徐立富, 刘宇, 等. 深部煤层气水赋存机制、环境及动态演化[J]. 煤田地质与勘探, 2024, 52(2): 40-51. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202402005.htm

    LI Yong, XU Lifu, LIU Yu, et al. Occurrence mechanism, environment and dynamic evolution of gas and water in deep coal seams[J]. Coal Geology & Exploration, 2024, 52(2): 40-51. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202402005.htm
    [5] 李勇, 徐立富, 张守仁, 等. 深煤层含气系统差异及开发对策[J]. 煤炭学报, 2023, 48(2): 900-917. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202302028.htm

    LI Yong, XU Lifu, ZHANG Shouren, et al. Gas bearing system difference in deep coal seams and corresponded development strategy[J]. Journal of China Coal Society, 2023, 48(2): 900-917. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202302028.htm
    [6] 张雪洁, 陈明义, 张同浩, 等. 表面活性剂水溶液抑制煤体瓦斯解吸作用的研究进展[J]. 矿业科学学报, 2022, 7(6): 738-751. 0.19606/j.cnki.jmst.2022.06.011

    ZHANG Xuejie, CHEN Mingyi, ZHANG Tonghao, et al. Research progress of surfactantaqueous solution inhibiting the desorption of gas in coal[J]. Journal of Mining Science and Technology, 2022, 7(6): 738-751. 0.19606/j.cnki.jmst.2022.06.011
    [7] 谢和平, 王金华, 姜鹏飞, 等. 煤炭科学开采新理念与技术变革研究[J]. 中国工程科学, 2015, 17(9): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201509009.htm

    XIE Heping, WANG Jinhua, JIANG Pengfei, et al. New concepts and technology evolutions in scientific coal mining[J]. Engineering Sciences, 2015, 17(9): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201509009.htm
    [8] 袁亮, 林柏泉, 杨威. 我国煤矿水力化技术瓦斯治理研究进展及发展方向[J]. 煤炭科学技术, 2015, 43(1): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201501013.htm

    YUAN Liang, LIN Baiquan, YANG Wei. Research progress and development direction of gas control with mine hydraulic technology in China coal mine[J]. Coal Science and Technology, 2015, 43(1): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201501013.htm
    [9] 董庆祥, 王兆丰, 韩亚北, 等. 液态CO2相变致裂的TNT当量研究[J]. 中国安全科学学报, 2014, 24(11): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201411016.htm

    DONG Qingxiang, WANG Zhaofeng, HAN Yabei, et al. Research on TNT equivalent of liquid CO2 phase-transition fracturing[J]. China Safety Science Journal, 2014, 24(11): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201411016.htm
    [10] LU T K, WANG Z F, YANG H M, et al. Improvement of coal seam gas drainage by under-panel cross-strata stimulation using highly pressurized gas[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 77: 300-312. doi: 10.1016/j.ijrmms.2015.03.034
    [11] 周建伟, 王晓蕾, 李云. 深孔控制CO2预裂爆破在煤巷掘进消突中的应用[J]. 煤炭技术, 2014, 33(9): 30-32. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201409012.htm

    ZHOU Jianwei, WANG Xiaolei, LI Yun. Application for CO2 parameter design of deep-hole controlling presplitting blasting in coalroad driving[J]. Coal Technology, 2014, 33(9): 30-32. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201409012.htm
    [12] 苏伟伟. 石门揭煤区液态CO2致裂增透加速消突技术[J]. 煤矿安全, 2019, 50(2): 144-147, 151. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201902034.htm

    SU Weiwei. Technology of rapid outburst elimination by liquid CO2 fracturing in region of coal uncovering[J]. Safety in Coal Mines, 2019, 50(2): 144-147, 151. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201902034.htm
    [13] 曹运兴, 张新生, 张军胜, 等. CO2相变致裂煤的显微构造特征与成因机制[J]. 煤田地质与勘探, 2023, 51(2): 137-145. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202302010.htm

    CAO Yunxing, ZHANG Xinsheng, ZHANG Junsheng, et al. Characteristics and formation mechanisms of microstructures in coal treated with CO2 phase transition fracturing[J]. Coal Geology & Exploration, 2023, 51(2): 137-145. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202302010.htm
    [14] CHEN H D, WANG Z F, CHEN X E, et al. Increasing permeability of coal seams using the phase energy of liquid carbon dioxide[J]. Journal of CO2 Utilization, 2017, 19: 112-119. doi: 10.1016/j.jcou.2017.03.010
    [15] 车玉燕, 邹冠贵, 殷裁云, 等. 雨汪井田超压含煤地层孔隙特征及孔隙体积模量演变规律[J]. 矿业科学学报, 2022, 7(3): 275-285. doi: 10.19606/j.cnki.jmst.2022.03.002

    CHE Yuyan, ZOU Guangui, YIN Caiyun, et al. The evolution law of pore characteristics and pore bulk modulus for overpressured coal-bearing formation in Yuwang Minefield[J]. Journal of Mining Science and Technology, 2022, 7(3): 275-285. doi: 10.19606/j.cnki.jmst.2022.03.002
    [16] ZHANG S H, TANG S H, TANG D Z, et al. The characteristics of coal reservoir pores and coal facies in Liulin district, Hedong coal field of China[J]. International Journal of Coal Geology, 2010, 81(2): 117-127. doi: 10.1016/j.coal.2009.11.007
    [17] 李天, 任大忠, 甯波, 等. 煤层孔隙结构多尺度联合表征及其对可动流体的影响[J]. 矿业科学学报, 2023, 8(4): 569-582. doi: 10.19606/j.cnki.jmst.2023.04.013

    LI Tian, REN Dazhong, NING Bo, et al. Multi-scale joint characterization of coal seam pore structure and its influence on movable fluid[J]. Journal of Mining Science and Technology, 2023, 8(4): 569-582. doi: 10.19606/j.cnki.jmst.2023.04.013
    [18] 吕华永, 刘飞, 李良晖, 等. 顶煤预制裂隙定向水力压裂研究[J]. 矿业科学学报, 2018, 3(6): 553-560. http://kykxxb.cumtb.edu.cn/article/id/184

    LV Huayong, LIU Fei, LI Lianghui, et al. Study on directional hydraulic fracturing of prefabricated fissures in top coal[J]. Journal of Mining Science and Technology, 2018, 3(6): 553-560. http://kykxxb.cumtb.edu.cn/article/id/184
    [19] 杨立云, 董鹏翔, 王启睿, 等. 爆生气体驱动双共线Ⅰ型裂纹的扩展行为[J]. 矿业科学学报, 2023, 8(4): 538-547. doi: 10.19606/j.cnki.jmst.2023.04.010

    YANG Liyun, DONG Pengxiang, WANG Qirui, et al. Propagation behavior of two collinear mode Ⅰ cracks driven by explosive gas[J]. Journal of Mining Science and Technology, 2023, 8(4): 538-547. doi: 10.19606/j.cnki.jmst.2023.04.010
    [20] DOU H R, XIE J N, XIE J, et al. Study on the mechanism of the influence of HNO3 and HF acid treatment on the CO2 adsorption and desorption characteristics of coal[J]. Fuel, 2022, 309: 122187. doi: 10.1016/j.fuel.2021.122187
    [21] 骆浩浩, 张渊通, 左进京, 等. 冲击荷载下运动裂纹与空孔相互作用的焦散线试验研究[J]. 矿业科学学报, 2022, 7(2): 210-216. doi: 10.19606/j.cnki.jmst.2022.02.008

    LUO Haohao, ZHANG Yuantong, ZUO Jinjing, et al. Caustics experimental study on the interaction between moving cracks and voids under impact loading[J]. Journal of Mining Science and Technology, 2022, 7(2): 210-216. doi: 10.19606/j.cnki.jmst.2022.02.008
    [22] ZHANG Z, LIU G F, CAO Y X, et al. Experimental investigation of CS2 extraction to enhance the permeability of coal[J]. Transport in Porous Media, 2021, 136(3): 899-922. doi: 10.1007/s11242-021-01546-w
    [23] 刘伟吉, 张有建, 祝效华, 等. 高压电脉冲破岩机理数值模拟研究[J]. 矿业科学学报, 2023, 8(5): 642-653. doi: 10.19606/j.cnki.jmst.2023.05.006

    LIU Weiji, ZHANG Youjian, ZHU Xiaohua, et al. Numerical simulation study of rock breaking mechanism by high voltage electric pulse[J]. Journal of Mining Science and Technology, 2023, 8(5): 642-653. doi: 10.19606/j.cnki.jmst.2023.05.006
    [24] BAI X, ZHANG D M, ZENG S, et al. An enhanced coalbed methane recovery technique based on CO2 phase transition jet coal-breaking behavior[J]. Fuel, 2020, 265: 116912. doi: 10.1016/j.fuel.2019.116912
    [25] XIA B W, LIU X F, SONG D Z, et al. Evaluation of liquid CO2 phase change fracturing effect on coal using fractal theory[J]. Fuel, 2021, 287: 119569. doi: 10.1016/j.fuel.2020.119569
    [26] LIU X F, NIE B S, GUO K Y, et al. Permeability enhancement and porosity change of coal by liquid carbon dioxide phase change fracturing[J]. Engineering Geology, 2021, 287: 106106. doi: 10.1016/j.enggeo.2021.106106
    [27] LIU H, LIU G F, ZHANG Z, et al. Effects of liquid CO2 phase transition fracturing on mesopores and micropores in coal[J]. Energy & Fuels, 2022, 36(17): 10016-10025.
    [28] 张震, 刘高峰, 李宝林, 等. CO2相变致裂煤的纳米孔隙尺度改造效应[J]. 岩石力学与工程学报, 2023, 42(3): 672-684. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202303012.htm

    ZHANG Zhen, LIU Gaofeng, LI Baolin, et al. Transformed effect of nano-pores in coal by CO2 phase transition fracturing[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(3): 672-684. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202303012.htm
    [29] LIU G F, LI B L, ZHANG Z, et al. Effects of liquid CO2 phase transition fracturing on methane adsorption of coal[J]. Energy & Fuels, 2023, 37(3): 1949-1961.
    [30] CAO Y X, ZHANG J S, ZHAI H, et al. CO2 gas fracturing: a novel reservoir stimulation technology in low permeability gassy coal seams[J]. Fuel, 2017, 203: 197-207. doi: 10.1016/j.fuel.2017.04.053
    [31] CAO Y X, ZHANG J S, ZHANG X S, et al. Micro-fractures in coal induced by high pressure CO2 gas fracturing[J]. Fuel, 2022, 311: 122148. doi: 10.1016/j.fuel.2021.122148
    [32] 白鑫, 张东明, 王艳, 等. 液态CO2相变射流压力变化及其煤岩致裂规律[J]. 中国矿业大学学报, 2020, 49(4): 661-670. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202004006.htm

    BAI Xin, ZHANG Dongming, WANG Yan, et al. Pressure variation and coal fracturing law of liquid CO2 phase transition jet[J]. Journal of China University of Mining & Technology, 2020, 49(4): 661-670. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202004006.htm
    [33] 刘大锰, 李振涛, 蔡益栋. 煤储层孔-裂隙非均质性及其地质影响因素研究进展[J]. 煤炭科学技术, 2015, 43(2): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201502003.htm

    LIU Dameng, LI Zhentao, CAI Yidong. Study progress on pore-crack heterogeneity and geological influence factors of coal reservoir[J]. Coal Science and Technology, 2015, 43(2): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201502003.htm
    [34] 冯雪健, 沈永星, 周动, 等. 基于CT数字岩心深度学习的煤裂隙分布识别研究[J]. 煤炭科学技术, 2023, 51(8): 97-104. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202308009.htm

    FENG Xuejian, SHEN Yongxing, ZHOU Dong, et al. Multi-scale distribution of coal fractures based on CT digital core deep learning[J]. Coal Science and Technology, 2023, 51(8): 97-104. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202308009.htm
    [35] 赵明凯, 孔德森. 考虑裂隙面粗糙度和开度分形维数的岩石裂隙渗流特性研究[J]. 岩石力学与工程学报, 2022, 41(10): 1993-2002. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202210005.htm

    ZHAO Mingkai, KONG Desen. Study on seepage characteristics of rock fractures considering fracture surface roughness and opening fractal dimension[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(10): 1993-2002. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202210005.htm
    [36] 李相臣, 陈德飞, 康毅力, 等. 基于CT扫描的煤岩孔裂隙表征[J]. 煤田地质与勘探, 2016, 44(5): 58-62, 70. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201605012.htm

    LI Xiangchen, CHEN Defei, KANG Yili, et al. Characterization of pores and fractures of coal based on CT scan[J]. Coal Geology & Exploration, 2016, 44(5): 58-62, 70. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201605012.htm
    [37] 郑江韬, 齐子豪, 刘佳存, 等. 基于卷积神经网络的煤岩微裂隙提取方法[J]. 矿业科学学报, 2022, 7(6): 680-688. doi: 10.19606/j.cnki.jmst.2022.06.005

    ZHENG Jiangtao, QI Zihao, LIU Jiacun, et al. Segmentation of micro-cracks in fractured coal based on convolutional neural network[J]. Journal of Mining Science and Technology, 2022, 7(6): 680-688. doi: 10.19606/j.cnki.jmst.2022.06.005
    [38] 杜锋, 王凯, 董香栾, 等. 基于CT三维重构的煤岩组合体损伤破坏数值模拟研究[J]. 煤炭学报, 2021, 46(S1): 253-262. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2021S1024.htm

    DU Feng, WANG Kai, DONG Xiangluan, et al. Numerical simulation of damage and failure of coal-rock combination based on CT three-dimensional reconstruction[J]. Journal of China Coal Society, 2021, 46(S1): 253-262. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2021S1024.htm
    [39] ZHANG Z, LIU G F, WANG X M, et al. Fractal characterization on fracture volume in coal based on CT scanning: principle, methodology, and implication[J]. Fractals, 2022, 30(6): 2250124-81. doi: 10.1142/S0218348X22501249
    [40] WANG Z Z, PAN J N, HOU Q L, et al. Anisotropic characteristics of low-rank coal fractures in the Fukang mining area, China[J]. Fuel, 2018, 211: 182-193. doi: 10.1016/j.fuel.2017.09.067
    [41] KUMAR H, LESTER E, KINGMAN S, et al. Inducing fractures and increasing cleat apertures in a bituminous coal under isotropic stress via application of microwave energy[J]. International Journal of Coal Geology, 2011, 88(1): 75-82.
    [42] WENIGER S, WENIGER P, LITTKE R. Characterizing coal cleats from optical measurements for CBM evaluation[J]. International Journal of Coal Geology, 2016, 154/155: 176-192.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  10
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-24
  • 修回日期:  2024-04-05
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回