留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

提钛炉渣-铁基全尾砂-水泥胶结充填体配比实验研究

李杰林 李奥 郝建璋 徐继业 张良兵

李杰林, 李奥, 郝建璋, 徐继业, 张良兵. 提钛炉渣-铁基全尾砂-水泥胶结充填体配比实验研究[J]. 矿业科学学报, 2023, 8(6): 838-846. doi: 10.19606/j.cnki.jmst.2023.06.010
引用本文: 李杰林, 李奥, 郝建璋, 徐继业, 张良兵. 提钛炉渣-铁基全尾砂-水泥胶结充填体配比实验研究[J]. 矿业科学学报, 2023, 8(6): 838-846. doi: 10.19606/j.cnki.jmst.2023.06.010
Li Jielin, Li Ao, Hao Jianzhang, Xü Jiye, Zhang Liangbing. Experimental study on the ratio between ti-bearing blast furnace slag-iron-based full tailing sand and cement in cementitious filling[J]. Journal of Mining Science and Technology, 2023, 8(6): 838-846. doi: 10.19606/j.cnki.jmst.2023.06.010
Citation: Li Jielin, Li Ao, Hao Jianzhang, Xü Jiye, Zhang Liangbing. Experimental study on the ratio between ti-bearing blast furnace slag-iron-based full tailing sand and cement in cementitious filling[J]. Journal of Mining Science and Technology, 2023, 8(6): 838-846. doi: 10.19606/j.cnki.jmst.2023.06.010

提钛炉渣-铁基全尾砂-水泥胶结充填体配比实验研究

doi: 10.19606/j.cnki.jmst.2023.06.010
基金项目: 

“十三五”国家重点研发计划 2020YFC1909801

中南大学研究生自主探索创新 1053320214887

详细信息
    作者简介:

    李杰林(1982—),男,湖南宁远人,博士,副教授,主要从事采矿工程、岩石力学和矿山固废处置与资源化利用等方面的教学和科研工作。Tel:13873137080,E-mail:lijielin@163.com

  • 中图分类号: TD853

Experimental study on the ratio between ti-bearing blast furnace slag-iron-based full tailing sand and cement in cementitious filling

  • 摘要: 为研究提钛炉渣替换水泥全尾砂胶结充填体的最佳配比及力学性能,以提钛炉渣(TBS)、铁基全尾砂(IFT)和水泥(P.O 42.5R)为实验材料,在分析该提钛炉渣的粒径级配组成、成分等物理化学特性的基础上,制备灰砂比1∶4、1∶6、1∶8和提钛炉渣掺入替换比为40%、50%、60%、70%、80% 的充填体试样,测定了养护龄期分别为7 d、14 d和28 d时的充填体单轴抗压强度。实验结果表明:充填体的抗压强度与养护期龄正相关;相同养护时间下,充填体的单轴抗压强度随着灰砂比的增大而增大;随提钛炉渣替换比增大,充填体28 d强度先增大后减小;当提钛炉渣替换比为50% 时,灰砂比1∶8、1∶6、1∶4的充填体28 d抗压强度分别为1.8 MPa、2.5 MPa、4.0 MPa,均超过未添加提钛炉渣的试块强度,表明掺入提钛炉渣对充填体的28 d强度具有明显的提升作用。研究结果表明,提钛炉渣可开发为矿山充填胶凝材料,从而降低矿山充填成本。
  • 图  1  原材料外观形貌

    Figure  1.  Image and morphology of TBS and IFT

    图  2  全尾砂和提钛尾渣粒度分布

    Figure  2.  Diagram of particle distribution of IFT and TBS

    图  3  28 d抗压测试后试样

    Figure  3.  28 d compressive test samples

    图  4  提钛炉渣替换比对充填体强度的影响

    Figure  4.  Effect of TBS replacement ratio on the strength of filling body

    图  5  不同灰砂比各期龄抗压强度

    Figure  5.  Compressive strength of different lime and sand ratios at different age

    图  6  偏差扰动

    Figure  6.  Deviation disturbance diagram

    图  7  两因素交互作用下对单轴抗压强度的影响

    Figure  7.  Influence of two factors on uniaxial compressive strength

    图  8  水化反应过程示意图

    Figure  8.  Diagram of hydration reaction proce

    表  1  化学成分分析结果

    Table  1.   Results of chemical composition analysis

    CaO MgO MnO SiO2 TiO2 Al2O3 SO3 Fe2O3 TiC Na2O TiN Cl
    ω(IFT)/% 12.7 9.20 0.181 37.49 4.355 13.2 1.01 13.24 0.98 0.026
    ω(TBS)/% 26.52 8.78 0.71 25.3 5.98 13.15 0.98 2.75 0.98 3.28
    下载: 导出CSV

    表  2  抗压强度实验结果

    Table  2.   Compressive strength test results

    编号 提钛炉渣掺入比例/% 水泥掺入比例/% 灰砂比 7 d抗压强度/MPa 14 d抗压强度/MPa 28 d抗压强度/MPa
    1 0 100 1∶4 1.43 2.90 3.33
    2 40 60 1.23 2.23 3.67
    3 50 50 1.30 2.67 4.00
    4 60 40 1.53 2.73 3.60
    5 70 30 1.23 2.10 2.63
    6 80 20 0.60 0.90 1.67
    7 0 100 1∶6 1.07 1.53 1.67
    8 40 60 0.87 1.17 1.80
    9 50 50 0.93 1.27 2.50
    10 60 40 0.80 1.07 1.97
    11 70 30 0.77 0.93 1.90
    12 80 20 0.60 0.60 1.40
    13 0 100 1∶8 1.03 0.90 0.97
    14 40 60 0.89 1.10 1.63
    15 50 50 0.80 1.03 1.77
    16 60 40 0.83 1.03 1.73
    17 70 30 0.60 0.70 1.23
    18 80 20 0.00 0.00 0.73
    下载: 导出CSV

    表  3  方差分析结果

    Table  3.   ANOVA results

    误差来源 平方和 自由度 均方 F P 评价
    模型 8.900 6 1.480 7.390 0.003 显著
    A 4.160 1 4.160 20.710 0.001
    B 3.860 1 3.860 19.230 0.001
    C 0.035 1 0.035 0.175 0.685
    AB 0.748 1 0.748 3.720 0.083
    AC 0.014 1 0.014 0.072 0.794
    BC 0.081 1 0.081 0.404 0.539
    残差 2.010 10 0.201
    失拟值 1.300 6 0.217 1.230 0.440 不显著
    自然误差 0.706 4 0.177
    相关系数和 10.910 16
    下载: 导出CSV
  • [1] 何建元, 尹升华, 陈卓, 等. 矿用新型充填胶凝材料配比实验及其水化机理研究[J]. 金属矿山, 2021(8): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202108004.htm

    He Jianyuan, Yin Shenghua, Chen Zhuo, et al. Study on the mixing ratio experiment and hydration mechanism of new filling cementitious materials for mining[J]. Metal Mine, 2021(8): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202108004.htm
    [2] 仵锋锋, 姚中亮, 康瑞海, 等. 固废综合利用充填低成本胶结剂研究[J]. 矿业研究与开发, 2019, 39(2): 70-72. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201902016.htm

    Wu Fengfeng, Yao Zhongliang, Kang Ruihai, et al. Study on low-cost cementing agent for solid waste comprehensive utilization in filling[J]. Mining Research and Development, 2019, 39(2): 70-72. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201902016.htm
    [3] 袁积余, 郭生茂. 矿山井下低成本充填胶凝材料的开发研究[J]. 甘肃冶金, 2008, 30(1): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYE200801007.htm

    Yuan Jiyu, Guo Shengmao. Development and research of low-cost filling cementing material in underground mine[J]. Gansu Metallurgy, 2008, 30(1): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYE200801007.htm
    [4] 高玉倩, 韩瑞亮, 胡亚军, 等. 深井矿山低成本尾矿充填胶凝材料开发实验[J]. 现代矿业, 2020, 36(7): 70-72. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB202007022.htm

    Gao Yuqian, Han Ruiliang, Hu Yajun, et al. Development experiment of low-cost tailings filling cementing material in deep mine[J]. Modern Mining, 2020, 36(7): 70-72. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB202007022.htm
    [5] 贾世杰, 徐洪艳, 陈辉. 粉煤灰-水泥基胶结充填体早期强度及水化机理研究[J]. 采矿技术, 2021, 21(3): 164-167, 183. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCK202103047.htm

    Jia Shijie, Xu Hongyan, Chen Hui. Study on early strength and hydration mechanism of fly ash-cement-based cemented backfill[J]. Mining Technology, 2021, 21(3): 164-167, 183. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCK202103047.htm
    [6] 张国胜, 杨晓炳, 郭斌, 等. 全尾砂充填采矿低成本新型充填胶凝材料研究与发展方向[J]. 金属矿山, 2020(7): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202007002.htm

    Zhang Guosheng, Yang Xiaobing, Guo Bin, et al. Study and development direction of a new low cost filling cementitious material for mining with unclassified tailings filling method[J]. Metal Mine, 2020(7): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202007002.htm
    [7] 王丽娟, 刘玉娟. 碱激发矿渣/粉煤灰体系流动性及力学性能实验研究[J]. 矿业研究与开发, 2022, 42(6): 141-147. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202206024.htm

    Wang Lijuan, Liu Yujuan. Experimental study on the fluidity and mechanical properties of alkali-activated slag/fly ash system[J]. Mining Research and Development, 2022, 42(6): 141-147. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202206024.htm
    [8] 朱承宝, 祝鑫, 彭亮, 等. 矿渣微粉胶凝材料在全尾砂膏体充填中的应用研究[J]. 采矿技术, 2022, 22(2): 126-129. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCK202202030.htm

    Zhu Chengbao, Zhu Xin, Peng Liang, et al. Study on application of slag micropowder cementing material in paste filling of all tailings[J]. Mining Technology, 2022, 22(2): 126-129. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCK202202030.htm
    [9] Xu W B, Zhang Y L, Zuo X H, et al. Time-dependent rheological and mechanical properties of silica fume modified cemented tailings backfill in low temperature environment[J]. Cement and Concrete Composites, 2020, 114: 103804.
    [10] 李立涛, 高谦, 陈得信, 等. 石膏-熟料质量比对矿渣充填胶凝材料性能的影响及应用[J]. 中南大学学报: 自然科学版, 2020, 51(2): 489-498. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202002022.htm

    Li Litao, Gao Qian, Chen Dexin, et al. Effect of gypsum-clinker mass ratios on properties of slag filling cementitious material and its application[J]. Journal of Central South University: Science and Technology, 2020, 51(2): 489-498. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202002022.htm
    [11] 张盛友, 孙伟, 李金鑫. 基于逐步回归分析法的炉渣-水泥-全尾砂胶结充填体强度影响分析[J]. 硅酸盐通报, 2020, 39(12): 3866-3873, 3880. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202012018.htm

    Zhang Shengyou, Sun Wei, Li Jinxin. Strength influence analysis of slag-cement-unclassified tailings cemented filling based on stepwise regression analysis[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(12): 3866-3873, 3880. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202012018.htm
    [12] 王楠, 陈德玉, 米阳, 等. 利用攀钢提钛尾渣制备陶粒的研究[J]. 四川建材, 2018, 44(12): 11-12, 15. https://www.cnki.com.cn/Article/CJFDTOTAL-SCJZ201812004.htm

    Wang Nan, Chen Deyu, Mi Yang, et al. Study on preparation of ceramsite from tailings of titanium extraction in Panzhihua iron and steel company[J]. Sichuan Building Materials, 2018, 44(12): 11-12, 15. https://www.cnki.com.cn/Article/CJFDTOTAL-SCJZ201812004.htm
    [13] 何小龙. 提钛渣作水泥混凝土掺合料的实验研究[J]. 四川化工, 2016, 19(4): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SHYF201604013.htm

    He Xiaolong. Experimental study on chlorination titanium blast furnace slag as admixture[J]. Sichuan Chemical Industry, 2016, 19(4): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SHYF201604013.htm
    [14] 王景然, 柯昌明, 张锦化. 提钛尾渣对硅酸盐水泥水化性能的影响[J]. 硅酸盐通报, 2020, 39(5): 1511-1516. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202005023.htm

    Wang Jingran, Ke Changming, Zhang Jinhua. Effect of Ti-bearing blast furnace slag on hydration properties of Portland cement[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(5): 1511-1516. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202005023.htm
    [15] 刘宁. 冶金熔渣制备高性能微晶玻璃技术[D]. 鞍山: 辽宁科技大学, 2019.
    [16] 祝鑫, 李翠, 仵锋锋, 等. 冶炼渣活性优选及低成本胶凝剂研究[J]. 矿业研究与开发, 2022, 42(5): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202205004.htm

    Zhu Xin, Li Cui, Wu Fengfeng, et al. Activity optimization of smelting slag and study on low-cost cementing agent[J]. Mining Research and Development, 2022, 42(5): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202205004.htm
    [17] 胡家国, 古德生. 粉煤灰作为水泥替代品用于胶结充填的实验研究[J]. 矿业研究与开发, 2002, 22(5): 5-7, 14. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK200205001.htm

    Hu Jiaguo, Gu Desheng. An experimental study on consolidated filling using fly ash as A replacement for cement[J]. Mining Research and Development, 2002, 22(5): 5-7, 14. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK200205001.htm
    [18] 崔孝炜, 倪文, 任超. 钢渣矿渣基全固废胶凝材料的水化反应机理[J]. 材料研究学报, 2017, 31(9): 687-694. https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201709007.htm

    Cui Xiaowei, Ni Wen, Ren Chao. Hydration mechanism of all solid waste cementitious materials based on steel slag and blast furnace slag[J]. Chinese Journal of Materials Research, 2017, 31(9): 687-694. https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201709007.htm
    [19] Dong Y J, Feng C H, Zhao Q. Study on the structure of C-S-H gels of slag-cement hardened paste by Si, Al MAS NMR[J]. Applied Magnetic Resonance, 2019, 50(12): 1345-1357.
    [20] Liu Z Y, Ni W, Li Y, et al. The mechanism of hydration reaction of granulated blast furnace slag-steel slag-refining slag-desulfurization gypsum-based clinker-free cementitious materials[J]. Journal of Building Engineering, 2021, 44: 103289.
    [21] 刘树龙, 李公成, 刘国磊, 等. 石膏-矿渣-石灰复合胶凝体系早期水化作用机理[J]. 有色金属工程, 2021, 11(4): 102-109. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS202104015.htm

    Liu Shulong, Li Gongcheng, Liu Guolei, et al. Early hydration mechanism of gypsum-slag-lime composite cementitious system[J]. Nonferrous Metals Engineering, 2021, 11(4): 102-109. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS202104015.htm
    [22] 徐文彬, 杜建华, 宋卫东, 等. 超细全尾砂材料胶凝成岩机理实验[J]. 岩土力学, 2013, 34(8): 2295-2302. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201308033.htm

    Xu Wenbin, Du Jianhua, Song Weidong, et al. Experiment on the mechanism of consolidating backfill body of extra-fine grain unclassified tailings and cementitious materials[J]. Rock and Soil Mechanics, 2013, 34(8): 2295-2302. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201308033.htm
    [23] Xu W B, Tian M M, Li Q L. Time-dependent rheological properties and mechanical performance of fresh cemented tailings backfill containing flocculants[J]. Minerals Engineering, 2020, 145: 106064.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  42
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-30
  • 修回日期:  2023-07-10
  • 刊出日期:  2023-12-31

目录

    /

    返回文章
    返回