留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冻融作用下水泥改良土未冻水含量及孔隙特征试验研究

刘波 高荣 何艳清 赵璐 李东阳 孙颜顶

刘波, 高荣, 何艳清, 赵璐, 李东阳, 孙颜顶. 冻融作用下水泥改良土未冻水含量及孔隙特征试验研究[J]. 矿业科学学报, 2023, 8(6): 791-802. doi: 10.19606/j.cnki.jmst.2023.06.006
引用本文: 刘波, 高荣, 何艳清, 赵璐, 李东阳, 孙颜顶. 冻融作用下水泥改良土未冻水含量及孔隙特征试验研究[J]. 矿业科学学报, 2023, 8(6): 791-802. doi: 10.19606/j.cnki.jmst.2023.06.006
Liu Bo, Gao Rong, He Yanqing, Zhao Lu, Li Dongyang, Sun Yanding. Experiment research on unfrozen water content and pore characteristic of cement improved soil under freeze-thaw cycle[J]. Journal of Mining Science and Technology, 2023, 8(6): 791-802. doi: 10.19606/j.cnki.jmst.2023.06.006
Citation: Liu Bo, Gao Rong, He Yanqing, Zhao Lu, Li Dongyang, Sun Yanding. Experiment research on unfrozen water content and pore characteristic of cement improved soil under freeze-thaw cycle[J]. Journal of Mining Science and Technology, 2023, 8(6): 791-802. doi: 10.19606/j.cnki.jmst.2023.06.006

冻融作用下水泥改良土未冻水含量及孔隙特征试验研究

doi: 10.19606/j.cnki.jmst.2023.06.006
基金项目: 

国家自然科学基金 42172319

国家自然科学基金 41771083

北京市国资委创新研究重点项目 201908

详细信息
    作者简介:

    刘波(1970—),男,湖南湘潭人,教授,博士生导师,主要从事矿山建设和城市地下工程等方面的教学与研究工作。E-mail:liub@cumtb.edu.cn

  • 中图分类号: TU411.92

Experiment research on unfrozen water content and pore characteristic of cement improved soil under freeze-thaw cycle

  • 摘要: 水泥基材料注浆是控制人工冻结地层冻融变形普遍有效的措施。基于核磁共振技术,对冻融作用下不同水泥掺量的粉质黏土未冻水含量及冻融前后孔隙特征进行测试,结合扫描电镜和压汞技术分析了冻融前后水泥改良土的孔隙特征变化规律及冻融损伤微观机理。结果表明:①含水量一定时,随着水泥掺量的增大,孔隙中水分子磁化程度对温度的敏感性先增大后减小;②当水泥掺量为0~10%时,正融过程同一温度下,随着水泥掺量的增加,冻结土体中未冻水含量先减小后增大;③相比于未掺水泥的粉质黏土,水泥改良粉质黏土冻融前后孔隙的变化程度较小,当水泥掺量为5%时,其孔隙特征及微观结构受冻融循环影响较小。研究结果可为改良土体抗冻融损伤研究及人工冻结工程地层冻胀融沉稳定性控制提供参考。
  • 图  1  粉质黏土试样

    Figure  1.  Silty clay samples

    图  2  核磁共振及低温冷浴装置

    Figure  2.  Nuclear magnetic resonance and cooling system

    图  3  不同水泥掺量粉质黏土的NMR信号量与温度关系

    Figure  3.  NMR signal population-temperature of improved silty clay with different cement content

    图  4  不同水泥掺量改良粉质黏土正融过程未冻水含量-温度关系曲线

    Figure  4.  Relationship curves between unfrozen water content-temperature of improved silty clay with different cement content during thawing process

    图  5  不同水泥掺量的改良粉质黏土冻融前后孔隙水T2分布

    Figure  5.  T2 distribution curves of pore water in improved silty clay with different cement content before and after freeze-thaw cycle

    图  6  不同水泥掺量改良粉质黏土冻融前后孔隙特征参数变化曲线

    Figure  6.  Variation curves of pore characteristic parameters of improved silty clay with different cement content before and after freeze-thaw cycle

    图  7  不同水泥掺量改良粉质黏土冻融前后电镜扫描结果

    Figure  7.  SEM results of improved silty clay with different cement content before and after freeze-thaw cycle

    图  8  不同水泥掺量改良粉质黏土冻融前后孔隙孔径体积占比分布

    Figure  8.  Distribution of pore size proportion of improved silty clay with different cement content before and after freeze-thaw cycle

    图  9  5%水泥改良粉质黏土冻融前后NMR及MIP结果

    Figure  9.  NMR and MIP results of improved silty clay with 5% cement content before and after freeze-thaw cycle

    表  1  土样基本物理性质指标

    Table  1.   Basic physical property index of soil

    土类 天然含水率/% 天然干密度/(g·cm-3) 孔隙比 液限 塑限
    粉质黏土 28.92 1.54 0.72 32.9 18.7
    下载: 导出CSV

    表  2  不同水泥掺量改良粉质黏土顺磁回归线参数

    Table  2.   Paramagnetic regression parameters of improved silty clay with different cement content

    参数 土样
    试样A 试样B 试样C 试样D 试样E
    a -43.64 -50.53 -65.38 -50.17 -47.76
    b 19 968.22 21 366.12 22 272.32 22 231.37 22 372.91
    w/% 28.93 29.04 28.86 29.12 28.98
    下载: 导出CSV

    表  3  不同水泥掺量改良粉质黏土冻融前后总孔隙率及孔径中值(MIP)

    Table  3.   Total porosity and median pore diameter of improved silty clay with different cement content before and after freeze-thaw cycle(MIP)

    特征参数 A冻融前 A冻融后 C冻融前 C冻融后 E冻融前 E冻融后
    总孔隙率/% 34.21 35.77 32.96 33.23 30.59 29.16
    孔径中值/μm 3.58 3.43 3.42 2.37 2.32 2.10
    冻融前后总孔隙率变化率/% 4.56 0.81 -4.67
    冻融前后孔径中值变化率/% -4.19 -30.70 -9.48
    下载: 导出CSV
  • [1] 陈湘生. 冻结法几个关键问题及在地下空间近接工程中最新应用[J]. 隧道建设, 2015, 35(12): 1243-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201512002.htm

    Chen Xiangsheng. Several key points of artificial ground freezing method and its latest application in China[J]. Tunnel Construction, 2015, 35(12): 1243-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201512002.htm
    [2] 戴华东, 王青成. 万福煤矿深厚表土层冻土力学性质试验研究[J]. 矿业科学学报, 2019, 4(2): 120-126. http://kykxxb.cumtb.edu.cn/article/id/205

    Dai Huadong, Wang Qingcheng. Experimental study on mechanical properties of frozen soil in deep soil of Wanfu coal mine[J]. Journal of Mining Science and Technology, 2019, 4(2): 120-126. http://kykxxb.cumtb.edu.cn/article/id/205
    [3] 李双洋, 张明义, 高志华, 等. 广州某地铁人工冻结法施工热力分析[J]. 冰川冻土, 2006, 28(6): 823-832. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200606003.htm

    Li Shuangyang, Zhang Mingyi, Gao Zhihua, et al. Thermal and mechanical analysis of the artificial freezing method applied to a subway tunnel in Guangzhou[J]. Journal of Glaciology and Geocryology, 2006, 28(6): 823-832. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200606003.htm
    [4] 谭龙, 韦昌富, 田慧会, 等. 冻土未冻水含量的低场核磁共振试验研究[J]. 岩土力学, 2015, 36(6): 1566-1572. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506006.htm

    Tan Long, Wei Changfu, Tian Huihui, et al. Experimental study of unfrozen water content of frozen soils by low-field nuclear magnetic resonance[J]. Rock and Soil Mechanics, 2015, 36(6): 1566-1572. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506006.htm
    [5] Tian H H, Wei C F, Lai Y M, et al. Quantification of water content during freeze-thaw cycles: a nuclear magnetic resonance based method[J]. Vadose Zone Journal, 2018, 17(1): 1-12.
    [6] 刘波, 李东阳, 廖建军. 土体压力对地铁旁通道解冻后地表沉降的影响[J]. 煤炭学报, 2011, 36(4): 551-555. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201104005.htm

    Liu Bo, Li Dongyang, Liao Jianjun. The effect of earth pressure on ground settlement after frozen soil thawing in connect aisle construction of metro engineering[J]. Journal of China Coal Society, 2011, 36(4): 551-555. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201104005.htm
    [7] Liu B, Ma Y J, Liu N, et al. Investigation of pore structure changes in Mesozoic water-rich sandstone induced by freeze-thaw process under different confining pressures using digital rock technology[J]. Cold Regions Science and Technology, 2019, 161: 137-149. doi: 10.1016/j.coldregions.2019.03.006
    [8] Liu B, He Y Q, Han Y H, et al. An improved model assessing variation characteristics of pore structure of sandy soil thawing from extremely low temperature using NMR technique[J]. Cold Regions Science and Technology, 2023, 205: 103717. doi: 10.1016/j.coldregions.2022.103717
    [9] 李涛, 刘波, 李岩, 等. 基于微观结构的饱和红黏土孔隙比计算[J]. 中国矿业大学学报, 2011, 40(5): 720-725. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201105009.htm

    Li Tao, Liu Bo, Li Yan, et al. The void ratio of saturated red clay calculated from a micro-structure model[J]. Journal of China University of Mining & Technology, 2011, 40(5): 720-725. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201105009.htm
    [10] 刘波, 李东阳, 刘璐璐, 等. 冻土正融过程CT扫描试验及图像分析[J]. 煤炭学报, 2012, 37(12): 2014-2019. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201212011.htm

    Liu Bo, Li Dongyang, Liu Lulu, et al. CT scanning and images analysis during frozen soil thawing[J]. Journal of China Coal Society, 2012, 37(12): 2014-2019. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201212011.htm
    [11] Liu B, Li D Y. A simple test method to measure unfrozen water content in clay-water systems[J]. Cold Regions Science and Technology, 2012, 78: 97-106. doi: 10.1016/j.coldregions.2012.02.001
    [12] 李东阳, 刘波, 刘念, 等. 缩短核磁共振测定冻土未冻水含量实验时间的方法[J]. 冰川冻土, 2014, 36(6): 1502-1507. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201406021.htm

    Li Dongyang, Liu Bo, Liu Nian, et al. A method to save the determining time of unfrozen water within frozen soil by nuclear magnetic resonance[J]. Journal of Glaciology and Geocryology, 2014, 36(6): 1502-1507. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201406021.htm
    [13] 张立新, 徐学祖, 张招祥, 等. 冻土未冻水含量与压力关系的实验研究[J]. 冰川冻土, 1998, 20(2): 124-127. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT802.006.htm

    Zhang Lixin, Xu Xuezu, Zhang Zhaoxiang, et al. Experimental study of the relationship between the unfrozen water content of frozen soil and pressure[J]. Journal of Glaciolgy and Geocryology, 1998, 20(2): 124-127. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT802.006.htm
    [14] 王大雁, 朱元林, 马巍, 等. 冻土超声波波速与冻土物理力学性质试验研究[J]. 岩石力学与工程学报, 2003, 22(11): 1837-1840. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200311020.htm

    Wang Dayan, Zhu Yuanlin, Ma Wei, et al. Testing study on relationship between ultrasonic wave velocities and physico-mechanical property of frozen soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1837-1840. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200311020.htm
    [15] 尹振华, 张建明, 张虎, 等. 融化压缩下水泥改良冻土的微观孔隙特征演变[J]. 水文地质工程地质, 2021, 48(2): 97-105. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202102012.htm

    Yin Zhenhua, Zhang Jianming, Zhang Hu, et al. Microcosmic pore characteristics evolution of the cement improved frozen soil after thawing compression[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 97-105. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202102012.htm
    [16] Liu Z, Yu X B. Physically based equation for phase composition curve of frozen soils[J]. Transportation Research Record: Journal of the Transportation Research Board, 2013, 2349(1): 93-99.
    [17] Wang C, Lai Y, Zhang M Y. Estimating soil freezing characteristic curve based on pore-size distribution[J]. Applied Thermal Engineering, 2017, 124: 1049-1060.
    [18] 张向东, 扈晓飞. 负温条件下二灰改良风积砂土的动力参数试验研究[J]. 硅酸盐通报, 2017, 36(5): 1728-1734. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201705046.htm

    Zhang Xiangdong, Hu Xiaofei. Experimental study on dynamic parameters of modified aeolian sand with lime-fly ash at negative temperature[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(5): 1728-1734. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201705046.htm
    [19] 黄建华, 严耿明, 杨鹿鸣. 水泥改良土地层联络通道冻结温度场分析[J]. 土木工程学报, 2021, 54(5): 108-116. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202105011.htm

    Huang Jianhua, Yan Gengming, Yang Luming. Analysis of freezing temperature field in connecting passage of cement improved soil layer[J]. China Civil Engineering Journal, 2021, 54(5): 108-116. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202105011.htm
    [20] 王天亮, 刘建坤, 田亚护. 水泥及石灰改良土冻融循环后的动力特性研究[J]. 岩土工程学报, 2010, 32(11): 1733-1737. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201011019.htm

    Wang Tianliang, Liu Jiankun, Tian Yahu. Dynamic properties of cement-and lime-improved soil subjected to freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1733-1737. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201011019.htm
    [21] 崔宏环, 何静云, 张振寰, 等. 季节性冻土区水泥固化土冻融损伤模型[J]. 工业建筑, 2021, 51(5): 158-163. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ202105023.htm

    Cui Honghuan, He Jingyun, Zhang Zhenhuan, et al. A freeze-thaw damage model of cement-solidified soil in seasonal frozen soil zones[J]. Industrial Construction, 2021, 51(5): 158-163. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ202105023.htm
    [22] 张向东, 任昆, 李军. EPS颗粒改良土作为寒区路基填料的抗冻性能研究[J]. 冰川冻土, 2017, 39(6): 1273-1280. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201706013.htm

    Zhang Xiangdong, Ren Kun, Li Jun. Study on frost resistance of EPS particles modified soil as subgrade filler in cold regions[J]. Journal of Glaciology and Geocryology, 2017, 39(6): 1273-1280. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201706013.htm
    [23] 任昆, 于泽宁, 王海涛. 水泥煤渣改良土累计变形特性试验研究[J]. 铁道学报, 2022, 44(10): 123-130. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202210016.htm

    Ren Kun, Yu Zening, Wang Haitao. Experimental study on cumulative deformation characteristics of cement cinder improved soil under freeze-thaw cycles[J]. Journal of the China Railway Society, 2022, 44(10): 123-130. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202210016.htm
    [24] Li Z Y, Yang G S, Liu H. The influence of regional freeze-thaw cycles on loess landslides: analysis of strength deterioration of loess with changes in pore structure[J]. Water, 2020, 12(11): 3047.
    [25] Li T G, Kong L W, Liu B H. The California bearing ratio and pore structure characteristics of weakly expansive soil in frozen areas[J]. Applied Sciences, 2020, 10(21): 7576.
    [26] An R, Zhang X W, Kong L W, et al. Artificial ground freezing impact on shear strength and microstructure of granite residual soil under an extremely low temperature[J]. Frontiers in Earth Science, 2021, 9: 772459.
    [27] Jin W D, Wang Z, Ai Y M, et al. Analysis of influencing factors and mechanism of strength of cement-modified silty sand[J]. Geofluids, 2021, 2021: 1-10.
    [28] Jaeger F, Rudolph N, Lang F, et al. Effects of soil solution's constituents on proton NMR relaxometry of soil samples[J]. Soil Science Society of America Journal, 2008, 72(6): 1694-1707.
    [29] Kruse A M, Darrow M M, Akagawa S. Improvements in measuring unfrozen water in frozen soils using the pulsed nuclear magnetic resonance method[J]. Journal of Cold Regions Engineering, 2018, 32(1): 04017016.
    [30] Bai R Q, Lai Y M, Zhang M Y, et al. Theory and application of a novel soil freezing characteristic curve[J]. Applied Thermal Engineering, 2018, 129: 1106-1114.
    [31] 杜晓方. 基于NMR技术的充填体孔隙结构的冻融损伤演化特征[J]. 煤矿安全, 2019, 50(9): 75-78. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201909018.htm

    Du Xiaofang. Characteristics of freeze-thaw damage evolution of pore structure in backfill material based on NMR technology[J]. Safety in Coal Mines, 2019, 50(9): 75-78. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201909018.htm
    [32] Liu Y W, Wang Q, Liu S W, et al. Experimental investigation of the geotechnical properties and microstructure of lime-stabilized saline soils under freeze-thaw cycling[J]. Cold Regions Science and Technology, 2019, 161: 32-42.
    [33] Watanabe K, Mizoguchi M. Amount of unfrozen water in frozen porous media saturated with solution[J]. Cold Regions Science and Technology, 2002, 34(2): 103-110.
    [34] Peyron M, Pierens G K, Lucas A J, et al. The modified stretched-exponential model for characterization of NMR relaxation in porous media[J]. Journal of Magnetic Resonance, Series A, 1996, 118(2): 214-220.
    [35] 贾海梁, 陈伟航, 王婷, 等. 微波照射冻土热融软化规律试验研究[J]. 岩石力学与工程学报, 2020, 39(S2): 3636-3644. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S2041.htm

    Jia Hailiang, Chen Weihang, Wang Ting, et al. Experimental study on the thawing and softening laws of frozen soil under microwave irradiation[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S2): 3636-3644. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S2041.htm
    [36] Mangold N, Allemand P, Duval P, et al. Experimental and theoretical deformation of ice-rock mixtures: implications on rheology and ice content of Martian permafrost[J]. Planetary and Space Science, 2002, 50(4): 385-401.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  20
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-17
  • 修回日期:  2023-08-31
  • 刊出日期:  2023-12-31

目录

    /

    返回文章
    返回