留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

体外预应力FRP筋混凝土梁受力性能的试验研究

吴丽丽 马媛媛 杨家琦 武海鹏

吴丽丽, 马媛媛, 杨家琦, 武海鹏. 体外预应力FRP筋混凝土梁受力性能的试验研究[J]. 矿业科学学报, 2023, 8(6): 780-790. doi: 10.19606/j.cnki.jmst.2023.06.005
引用本文: 吴丽丽, 马媛媛, 杨家琦, 武海鹏. 体外预应力FRP筋混凝土梁受力性能的试验研究[J]. 矿业科学学报, 2023, 8(6): 780-790. doi: 10.19606/j.cnki.jmst.2023.06.005
Wu Lili, Ma Yuanyuan, Yang Jiaqi, Wu Haipeng. Experimental study on mechanical behavior of external prestressed FRP reinforced concrete beams[J]. Journal of Mining Science and Technology, 2023, 8(6): 780-790. doi: 10.19606/j.cnki.jmst.2023.06.005
Citation: Wu Lili, Ma Yuanyuan, Yang Jiaqi, Wu Haipeng. Experimental study on mechanical behavior of external prestressed FRP reinforced concrete beams[J]. Journal of Mining Science and Technology, 2023, 8(6): 780-790. doi: 10.19606/j.cnki.jmst.2023.06.005

体外预应力FRP筋混凝土梁受力性能的试验研究

doi: 10.19606/j.cnki.jmst.2023.06.005
基金项目: 

国家自然科学基金 51678564

中国矿业大学(北京)越崎杰出学者奖励计划 2602021RC59

详细信息
    作者简介:

    吴丽丽(1977—),女,江西南昌人,博士,教授,博士生导师,主要从事钢结构、组合结构等方面的研究工作。Tel:010-62331237,E-mail:jennywll@163.con

  • 中图分类号: TU375.1; TB332

Experimental study on mechanical behavior of external prestressed FRP reinforced concrete beams

  • 摘要: 为了研究体外预应力复合材料筋混凝土梁的破坏特征和承载性能,对12根全FRP筋试验梁开展了三分点加载试验,其中体外预应力筋为碳纤维增强复合材料(CFRP)筋,受力筋和箍筋采用玻璃纤维增强复合材料(GFRP)筋。对比分析预应力水平、剪跨比、混凝土种类等因素变化对GFRP筋混凝土梁承载力的影响,推导了包含预应力筋应力增量影响的受弯承载力表达式,并将计算结果与试验结果进行对比。结果表明,无预应力梁的破坏主要由变形控制,施加预应力梁的破坏由变形控制转变为承载力控制。预应力FRP筋混凝土梁跨中挠度与预应力增量基本呈正比例关系。FRP筋梁承载力随剪跨比的增大而减小,且剪跨比对开裂荷载的影响更显著。混凝土种类对预应力梁开裂荷载的影响大,而对无预应力梁的开裂荷载和极限荷载影响较小。本文推导的预应力FRP筋混凝土梁承载力计算结果与实测值吻合较好。
  • 图  1  试验梁配筋示意图(单位:mm)

    Figure  1.  Schematic diagram of test beam reinforcement

    图  2  试验加载装置示意图

    Figure  2.  Diagram of test loading device

    图  3  混凝土梁测点布置(单位:mm)

    Figure  3.  Layout of displacement meters and strain gauges

    图  4  FRP筋混凝土梁荷载-挠度曲线

    Figure  4.  Load-deflection curves of beams with FRP tendons

    图  5  预应力筋拉断前后裂缝形态对比

    Figure  5.  Comparison of failure modes before and after prestressed tendon breaking

    图  6  体外预应力增量变化曲线

    Figure  6.  Incremental change curve of external prestress

    图  7  预应力FRP筋梁的截面应变分布

    Figure  7.  Strain distribution along the section of prestressed reinforcement beam with FRP tendons

    图  8  试件挠度沿跨度分布曲线

    Figure  8.  Load-deflection distribution curves along the span of specimen

    图  9  张拉预应力对比组混凝土梁荷载-挠度曲线

    Figure  9.  Load-deflection curves of FRP beams under different prestressing levels

    图  10  预应力水平对混凝土梁开裂荷载及极限荷载的影响

    Figure  10.  Influence of prestress level on cracking load and ultimate load of concrete beams

    图  11  不同剪跨比下FRP筋混凝土梁荷载-挠度曲线

    Figure  11.  Load-deflection curves of FRP beams with different shear span ratios

    图  12  剪跨比对混凝土梁开裂荷载及极限荷载的影响

    Figure  12.  Influence of shear span ratio on cracking load and ultimate load of concrete beams

    图  13  混凝土强度对混凝土梁开裂荷载及极限荷载的影响

    Figure  13.  Influence of concrete strength on cracking load and ultimate load of concrete beams

    图  14  不同混凝土种类下FRP筋混凝土梁荷载-挠度曲线

    Figure  14.  Load-deflection curves of FRP beams under different concrete types

    图  15  混凝土种类对梁开裂荷载及极限荷载的影响

    Figure  15.  Influence of concrete type on cracking load and ultimate load of concrete beam

    图  16  预应力筋混凝土梁变形示意图

    Figure  16.  Deformation diagram of prestressed reinforced concrete beam

    图  17  公式(5)与试验结果对比

    Figure  17.  Comparison between Formula 5 and test results

    图  18  梁截面受力计算简图

    Figure  18.  Calculation diagram of beam section

    表  1  试验梁设计方案

    Table  1.   Design scheme of test specimens

    梁号 混凝土种类 剪跨比 混凝土标号 预应力水平/%
    L1 SCC 3.75 C70 30
    L2 SCC 3.75 C70 45
    L3 SCC 3.75 C70 60
    L4 SCC 2.68 C45 45
    L5 SCC 3.75 C45 45
    L6 SCC 4.44 C45 45
    L7 普通 3.75 C45 45
    L8 SCC 4.44 C45 0
    L9 SCC 4.44 C70 0
    L10 普通 4.44 C45 0
    L11 SCC 3.75 C45 0
    L12 普通 2.68 C45 0
    注:SCC—自密实混凝土。
    下载: 导出CSV

    表  2  混凝土和FRP筋材料性能试验结果

    Table  2.   Test results of material properties of concrete and FRP bars

    混凝土/筋材类型 设计标号 28 d强度/MPa 极限抗拉强度/MPa 弹性模量/GPa
    SCC C70 72.80
    SCC C45 45.90
    普通 C45 46.00
    CFRP-8 2 724.00 190.22
    GFRP-8 1 348.00 54.70
    GFRP-12 1 105.00 48.54
    下载: 导出CSV

    表  3  体外预应力筋混凝土梁理论计算结果

    Table  3.   Theoretical calculation results of external prestressed reinforced concrete beams

    梁编号 计算挠度/mm 实际挠度/mm 比值 计算极限承载力/kN 实际承载力/kN 比值
    L1 68.24 68.64 0.99 171.18 145.53 1.18
    L2 47.41 60.87 0.78 141.37 128.18 1.10
    L3 53.09 68.27 0.78 162.63 151.70 1.07
    L4 35.91 33.00 1.09 148.69 114.00 1.30
    L5 28.9 32.00 0.90 103.76 87.00 1.19
    L6 64.62 64.74 1.00 140.54 118.88 1.18
    L7 65.38 61.77 1.06 174.14 133.06 1.31
    平均值 0.94 1.19
    标准值 0.13 0.09
    变异系数 0.13 0.08
    下载: 导出CSV
  • [1] Bhaskaran, Bhalla L, Rahman A, et al. An analysis of the updated cost of corrosion in India[J]. Materials Performance, 2014, 53(8): 56-65.
    [2] Ruan X J, Lu C H, Xu K, et al. Flexural behavior and serviceability of concrete beams hybrid-reinforced with GFRP bars and steel bars[J]. Composite Structures, 2020, 235: 111772. doi: 10.1016/j.compstruct.2019.111772
    [3] 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3): 24-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200603003.htm

    Ye Lieping, Feng Peng. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal, 2006, 39(3): 24-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200603003.htm
    [4] 朱虹, 钱洋. 工程结构用FRP筋的力学性能[J]. 建筑科学与工程学报, 2006, 23(3): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG200603004.htm

    Zhu Hong, Qian Yang. Mechanics performance of FRP tendons used in engineering structure[J]. Journal of Architecture and Civil Engineering, 2006, 23(3): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG200603004.htm
    [5] Bywalski C, Drzazga M, Kaźmierowski M, et al. Shear behavior of concrete beams reinforced with a new type of glass fiber reinforced polymer reinforcement: experimental study[J]. Materials, 2020, 13(5): 1159. doi: 10.3390/ma13051159
    [6] 徐可, 陆春华, 宣广宇, 等. 混合配筋钢纤维增强混凝土梁受弯承载力试验及理论计算[J]. 复合材料学报, 2020, 37(9): 2348-2357. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202009027.htm

    Xu Ke, Lu Chunhua, Xuan Guangyu, et al. Experimental and theoretical calculation on the flexural capacity of steel fiber reinforced concrete beams with hybrid reinforcing bars[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2348-2357. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202009027.htm
    [7] 彭飞, 薛伟辰. FRP筋混凝土T形和矩形截面梁抗弯承载力计算方法[J]. 工程力学, 2022, 39(2): 76-84, 122. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202202007.htm

    Peng Fei, Xue Weichen. Method of calculating the flexural strength of frp reinforced concrete t-shaped and rectangular beams[J]. Engineering Mechanics, 2022, 39(2): 76-84, 122. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202202007.htm
    [8] 王洋, 董恒磊, 王震宇. GFRP筋混凝土梁受弯性能试验[J]. 哈尔滨工业大学学报, 2018, 50(12): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201812003.htm

    Wang Yang, Dong Henglei, Wang Zhenyu. Flexural experiment of concrete beams reinforced with GFRP bars[J]. Journal of Harbin Institute of Technology, 2018, 50(12): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201812003.htm
    [9] 彭飞, 薛伟辰. 基于可靠度的GFRP筋混凝土梁抗弯承载力设计方法[J]. 土木工程学报, 2018, 51(5): 60-67. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201805007.htm

    Peng Fei, Xue Weichen. Reliability-based design method for ultimate load-bearing capacity of GFRP reinforced concrete beams under flexure[J]. China Civil Engineering Journal, 2018, 51(5): 60-67. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201805007.htm
    [10] El-Nemr Amr, Ahmed Ehab A, Benmokrane Brahim. Flexural behavior and serviceability of normal- and high-strength concrete beams reinforced with glass fiber-reinforced polymer bars[J]. ACI Structural Journal, 2013, 110(6): 1077-1087.
    [11] 赵秋红, 刘凯, 王菲, 等. GFRP筋橡胶集料混凝土梁受弯性能[J]. 复合材料学报, 2021, 38(5): 1611-1622. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202105030.htm

    Zhao Qiuhong, Liu Kai, Wang Fei, et al. Analyses on flexural behavior of GFRP-reinforced crumb rubber concrete beams[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1611-1622. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202105030.htm
    [12] 中华人民共和国住房和城乡建设部. 纤维增强复合材料建设工程应用技术规范: GB 50608—2010[S]. 北京: 中国计划出版社, 2011.
    [13] ACI Committee 440. Guide for the design and construction of structural concrete reinforced with fiber reinforced polymer bars[S]. Farmington Hills, ACI 440.1R, 2015.
    [14] Canadian Standards Association. Design and construction of building structure with fiber-reinforced polymers: CSA S806-12[S]. Ontario: Canadian Standards Association, 2012.
    [15] Japan Society of Civil Engineer. Recommendation for design and construction of concrete structures using continuous fiber reinforcing materials: JSCE 1997[S]. Tokyo: Japan Society of civil Engineer, 1997.
    [16] Al-Hamrani A, Alnahhal W. Shear behavior of basalt FRC beams reinforced with basalt FRP bars and glass FRP stirrups: experimental and analytical investigations[J]. Engineering Structures, 2021, 242: 112612. https://www.sciencedirect.com/science/article/pii/S0141029621007628
    [17] Sim J S, Park C W, Ju M K. Flexural failure analysis of concrete beams reinforced with newly developed deformed GFRP bars[J]. Key Engineering Materials, 2006, 324/325: 591-594.
    [18] Peng F, Xue W C. Shear behavior of post-tensioned concrete beams with draped FRP tendons and without transverse reinforcement[J]. Journal of Composites for Construction, 2021, 25(4): 04021027.
    [19] 杜修力, 王作虎, 詹界东. 预应力CFRP筋混凝土梁受剪性能试验研究[J]. 建筑结构学报, 2011, 32(4): 80-86. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201104012.htm

    Du Xiuli, Wang Zuohu, Zhan Jiedong. Experimental studies on shear behavior of concrete beams prestressed with CFRP tendons[J]. Journal of Building Structures, 2011, 32(4): 80-86. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201104012.htm
    [20] 吴丽丽, 耿大林, 岳岩松, 等. 体外预应力CFRP筋自密实混凝土梁的预应力损失[J]. 复合材料科学与工程, 2021(6): 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-BLGF202106004.htm

    Wu Lili, Geng Dalin, Yue Yansong, et al. Prestress loss of self-compacting concrete beams reinforced with external CFRP tendons[J]. Composites Science and Engineering, 2021(6): 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-BLGF202106004.htm
    [21] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 拉挤玻璃纤维增强塑料杆力学性能试验方法: GB/T 13096—2008[S]. 北京: 中国标准出版社, 2009.
    [22] 中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准: GB/T 50152—2012[S]. 北京: 中国建筑工业出版社, 2012.
    [23] 孙训方, 方孝淑, 关来泰. 材料力学-Ⅰ[M]. 5版. 北京: 高等教育出版社, 2009: 372-375.
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  29
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-27
  • 修回日期:  2023-09-09
  • 刊出日期:  2023-12-31

目录

    /

    返回文章
    返回