留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温作用下干热岩岩石物理实验及岩石物理建模研究

高万里 赵惊涛 王化伟

高万里, 赵惊涛, 王化伟. 高温作用下干热岩岩石物理实验及岩石物理建模研究[J]. 矿业科学学报, 2023, 8(6): 758-767. doi: 10.19606/j.cnki.jmst.2023.06.003
引用本文: 高万里, 赵惊涛, 王化伟. 高温作用下干热岩岩石物理实验及岩石物理建模研究[J]. 矿业科学学报, 2023, 8(6): 758-767. doi: 10.19606/j.cnki.jmst.2023.06.003
Gao Wanli, Zhao Jingtao, Wang Huawei. Rock physics experiment and rock physical modeling of hot dry rock under high temperature[J]. Journal of Mining Science and Technology, 2023, 8(6): 758-767. doi: 10.19606/j.cnki.jmst.2023.06.003
Citation: Gao Wanli, Zhao Jingtao, Wang Huawei. Rock physics experiment and rock physical modeling of hot dry rock under high temperature[J]. Journal of Mining Science and Technology, 2023, 8(6): 758-767. doi: 10.19606/j.cnki.jmst.2023.06.003

高温作用下干热岩岩石物理实验及岩石物理建模研究

doi: 10.19606/j.cnki.jmst.2023.06.003
基金项目: 

国家重点研发计划 2020YFE0201300

详细信息
    作者简介:

    高万里(1997—),男,河北石家庄人,博士研究生,主要从事地热温度场模拟、岩石物理等方面的研究工作。E-mail:gaowanli6666@163.com

    通讯作者:

    赵惊涛(1982—),男,河北邯郸人,教授,博士生导师,主要从事勘探地震、储层预测及地热探测等方面的教学与科研工作。E-mail:diffzjt@163.com

  • 中图分类号: P631

Rock physics experiment and rock physical modeling of hot dry rock under high temperature

  • 摘要: 为探究干热岩储层物性参数随温度变化的规律,本文对青海共和盆地29块干热岩样品进行高温岩石物理实验,分析了样品速度、磁场强度、电阻率等物性参数随温度变化的规律。研究结果表明:①岩石样品随着温度升高,密度逐渐减小,但衰减幅度不足1%;②样品纵横波速度受温度变化的影响较大,在120~180 ℃之间大幅衰减,纵波速度下降约1 500 m/s,横波速度下降约800 m/s;③在120 ℃时,磁场强度达到峰值,数值为室温下的7倍;④电阻率随温度升高呈现波动性变化,数值在10~25 Ω·m范围内变化。基于实验结果,结合经典的Gassmann方程和流体替换模型,定量分析了孔隙度和温度对纵波速度的影响:当孔隙度为0.025时,样品纵波速度随着温度的升高下降约600 m/s,当孔隙度为0.1时,样品纵波速度随着温度的升高下降约1 000 m/s。
  • 图  1  干热岩样品

    Figure  1.  Hot dry rock samples

    图  2  干热岩样品密度与温度关系

    Figure  2.  Density versus temperature for hot dry rock samples

    图  3  干热岩样品横波速度与温度关系

    Figure  3.  Transverse wave velocity versus temperature for hot dry rock samples

    图  4  干热岩样品纵波速度与温度关系

    Figure  4.  Longitudinal velocity versus temperature for hot dry rock samples

    图  5  干热岩样品磁场强度与温度关系

    Figure  5.  Magnetic field strength versus temperature for hot dry rock samples

    图  6  干热岩样品电阻率与温度关系

    Figure  6.  Resistivity versus temperature for hot dry rock samples

    图  7  干热岩样品体积模量随温度变化曲线

    Figure  7.  Variation curve of bulk modulus of hot dry rock samples with temperature

    图  8  干热岩样品剪切模量随温度变化曲线

    Figure  8.  Variation curve of shear modulus with temperature for hot dry rock samples

    图  9  不同孔隙度岩石横波速度随温度变化曲线

    Figure  9.  Fluid replacement rock transverse wave velocity volume variation curve with temperature

    图  10  不同孔隙度岩石纵波速度随温度变化曲线

    Figure  10.  Variation of rock longitudinal velocity with temperature after fluid replacement

    表  1  实验编号与试样编号对照表

    Table  1.   Comparison table between test number and sample number

    实验编号 1 2 3 4 5 6 7 8 9 10
    试样编号 砂岩1 砂岩2 20-19,1-2 20-19,1-,1 地表 2 沟后1 沟后1(2) 1井 2井 2井2
    实验编号 11 12 13 14 15 16 17 18 19 20
    试样编号 3井2 4井 4井2 5井1 5井2 沟后5 沟后5(2) 6井1 6井1(2) 6井2
    实验编号 21 22 23 24 25 26 27 28 29
    试样编号 沟后6 沟后6(2) 7井1 7井1(2) 7井2 7井2(2) 7井3 7井3(2) 3井1
    下载: 导出CSV
  • [1] Kelkar S, WoldeGabriel G, Rehfeldt K. Lessons learned from the pioneering hot dry rock project at Fenton Hill, USA[J]. Geothermics, 2016, 63: 5-14. doi: 10.1016/j.geothermics.2015.08.008
    [2] 蔺文静, 王凤元, 甘浩男, 等. 福建漳州干热岩资源选址与开发前景分析[J]. 科技导报, 2015, 33(19): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201519014.htm

    Lin Wenjing, Wang Fengyuan, Gan Haonan, et al. Site selection and development prospect of a hot dry rock resource project in Zhangzhou geothermal field, Fujian province[J]. Science & Technology Review, 2015, 33(19): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201519014.htm
    [3] 徐立. 江苏地区地热资源综合利用研究[D]. 南京: 南京大学, 2014.
    [4] Ledésert B, Joffre J, Amblès A, et al. Organic matter in the Soultz HDR granitic thermal exchanger (France): natural tracer of fluid circulations between the basement and its sedimentary cover[J]. Journal of Volcanology and Geothermal Research, 1996, 70(3/4): 235-253.
    [5] Bauer S, Johnson B. Effects of slow uniform heating on the physical properties of the westerly and charcoal granites[C]. 20th U.S. Symposium on Rock Mechanics (USRMS), Austin, Texas, 1979.
    [6] Johnston D H, Toksöz M N. Thermal cracking and amplitude dependent attenuation[J]. Journal of Geophysical Research: Solid Earth, 1980, 85(B2): 937-942. doi: 10.1029/JB085iB02p00937
    [7] 赵志丹, 高山, 骆庭川, 等. 秦岭和华北地区地壳低速层的成因探讨: 岩石高温高压波速实验证据[J]. 地球物理学报, 1996, 39(5): 642-652. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX605.006.htm

    Zhao Zhidan, Gao Shan, Luo Tingchuan, et al. Origin of the crustal low velocity layer of Qinling and North China evidence from laboratory measurement of p-wave velocity in rocks at high pt conditions[J]. Chinese Journal of Geophysics, 1996, 39(5): 642-652. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX605.006.htm
    [8] 马啸, 马东东, 胡大伟, 等. 实时高温真三轴试验系统的研制与应用[J]. 岩石力学与工程学报, 2019, 38(8): 1605-1614. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201908010.htm

    Ma Xiao, Ma Dongdong, Hu Dawei, et al. A real-time high-temperature true triaxial test system and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(8): 1605-1614. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201908010.htm
    [9] 黄真萍, 张义, 吴伟达. 遇水冷却的高温大理岩力学与波动特性分析[J]. 岩土力学, 2016, 37(2): 367-375. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201602008.htm

    Huang Zhenping, Zhang Yi, Wu Weida. Analysis of mechanical and wave properties of heat-treated marble by water cooling[J]. Rock and Soil Mechanics, 2016, 37(2): 367-375. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201602008.htm
    [10] 孟陆波, 李天斌, 徐进, 等. 高温作用下围压对页岩力学特性影响的试验研究[J]. 煤炭学报, 2012, 37(11): 1829-1833. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201211009.htm

    Meng Lubo, Li Tianbin, Xu Jin, et al. Experimental study on influence of confining pressure on shale mechanical properties under high temperature condition[J]. Journal of China Coal Society, 2012, 37(11): 1829-1833. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201211009.htm
    [11] 孙强, 张志镇, 薛雷, 等. 岩石高温相变与物理力学性质变化[J]. 岩石力学与工程学报, 2013, 32(5): 935-942. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201305011.htm

    Sun Qiang, Zhang Zhizhen, Xue Lei, et al. Physico-mechanical properties variation of rock with phase transformation under high temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(5): 935-942. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201305011.htm
    [12] 闫治国, 朱合华, 邓涛, 等. 三种岩石高温后纵波波速特性的试验研究[J]. 岩土工程学报, 2006, 28(11): 2010-2014. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200611016.htm

    Yan Zhiguo, Zhu Hehua, Deng Tao, et al. Experimental study on longitudinal wave characteristics of tuff, granite and breccia after high temperature[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 2010-2014. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200611016.htm
    [13] 何国梁, 吴刚, 黄醒春, 等. 砂岩高温前后超声特性的试验研究[J]. 岩土力学, 2007, 28(4): 779-784. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200704027.htm

    He Guoliang, Wu Gang, Huang Xingchun, et al. Experimental study on ultrasonic properties of sandstone before and after high temperature[J]. Rock and Soil Mechanics, 2007, 28(4): 779-784. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200704027.htm
    [14] 苏承东, 韦四江, 秦本东, 等. 高温对细砂岩力学性质影响机制的试验研究[J]. 岩土力学, 2017, 38(3): 623-630. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201703002.htm

    Su Chengdong, Wei Sijiang, Qin Bendong, et al. Experimental study of influence mechanism of high temperature on mechanical properties of fine-grained sandstone[J]. Rock and Soil Mechanics, 2017, 38(3): 623-630. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201703002.htm
    [15] Liu Z C, Du X D, Zhu Z Y, et al. Wave velocity in sandstone and mudstone under high temperature and overpressure in yinggehai basin[J]. Energies, 2022, 15(7): 2615. doi: 10.3390/en15072615
    [16] 毛竹, 刘兆东, 张友君, 等. 实验矿物物理的发展现状与趋势: 2. 弹性和波速[J]. 地球科学, 2022, 47(8): 2729-2743. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202208006.htm

    Mao Zhu, Liu Zhaodong, Zhang Youjun, et al. Recent progress and perspective of experimental mineral physics: 2. elasticity and sound velocity[J]. Earth Science, 2022, 47(8): 2729-2743. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202208006.htm
    [17] 薛卉, 舒彪, 陈君洁, 等. 高温高压下超临界二氧化碳作用对花岗岩力学性质影响的试验研究[J]. 岩土力学, 2022, 43(2): 377-384. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202202009.htm

    Xue Hui, Shu Biao, Chen Junjie, et al. Mechanical properties of granite after reaction with ScCO2 at high temperature and high pressure[J]. Rock and Soil Mechanics, 2022, 43(2): 377-384. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202202009.htm
    [18] 畅宇飞, 刘永刚. 高温高压静水压条件下岩石纵波、横波速度和泊松比的实验研究[J]. 矿物学报, 2022, 42(5): 640-648. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB202205008.htm

    Chang Yufei, Liu Yonggang. Experimental study on P-and S-wave velocities and Poisson's ratios of rocks under high temperature and high hydrostatic pressure[J]. Acta Mineralogica Sinica, 2022, 42(5): 640-648. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB202205008.htm
    [19] Peng H J, Zhao J T, Cui R. Predicting the temperature field of hot dry rocks by the seismic inversion method[J]. Energies, 2023, 16(4): 1865.
    [20] 孙川翔, 聂海宽, 苏海琨, 等. 温压耦合作用下四川盆地深层龙马溪组页岩孔渗和岩石力学特征[J]. 石油勘探与开发, 2023, 50(1): 77-88. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202301007.htm

    Sun Chuanxiang, Nie Haikuan, Su Haikun, et al. Porosity, permeability and rock mechanics of Lower Silurian Longmaxi Formation deep shale under temperature-pressure coupling in the Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2023, 50(1): 77-88. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202301007.htm
    [21] Gassmann F. Elastic waves through a packing of spheres[J]. Geophysics, 1951, 16(4): 673-685.
    [22] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. Ⅰ. low-frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 168-178.
    [23] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. Ⅱ. higher frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 179-191.
    [24] Biot M A. Generalized theory of acoustic propagation in porous dissipative media[J]. The Journal of the Acoustical Society of America, 1962, 34(9A): 1254-1264.
    [25] Biot M A. Generalized boundary condition for multiple scatter in acoustic reflection[J]. The Journal of the Acoustical Society of America, 1968, 44(6): 1616-1622.
    [26] Dvorkin J, Nur A. Dynamic poroelasticity: a unified model with the squirt and the Biot mechanisms[J]. Geophysics, 1993, 58(4): 524-533.
    [27] Diallo M S, Appel E. Acoustic wave propagation in saturated porous media: reformulation of the Biot/Squirt flow theory[J]. Journal of Applied Geophysics, 2000, 44(4): 313-325. https://www.sciencedirect.com/science/article/pii/S0926985100000094
    [28] Yan F Y, Han D H. Effect of pore geometry on Gassmann fluid substitution[J]. Geophysical Prospecting, 2016, 64(6): 1575-1587.
    [29] Si W P, Di B R, Wei J X, et al. Experimental study of water saturation effect on acoustic velocity of sandstones[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 37-43.
    [30] 刘欣欣, 印兴耀, 栾锡武. 天然气水合物地层岩石物理模型构建[J]. 中国科学: 地球科学, 2018, 48(9): 1248-1266. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201809009.htm

    Liu Xinxin, Yin Xingyao, Luan Xiwu. Seismic rock physical modelling for gas hydrate-bearing sediments[J]. Scientia Sinica: Terrae, 2018, 48(9): 1248-1266. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201809009.htm
    [31] Zhao L X, Cao C H, Yao Q L, et al. Gassmann consistency for different inclusion-based effective medium theories: implications for elastic interactions and poroelasticity[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(3): e2019JB018328.
    [32] 孟大江, 文鹏飞, 张如伟, 等. 天然气水合物横波速度等效介质模型预测方法[J]. 石油地球物理勘探, 2020, 55(1): 117-125, 8. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202001014.htm

    Meng Dajiang, Wen Pengfei, Zhang Ruwei, et al. Gas hydrate S-wave velocity prediction method based on effective medium model[J]. Oil Geophysical Prospecting, 2020, 55(1): 117-125, 8. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202001014.htm
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  205
  • HTML全文浏览量:  30
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-02
  • 修回日期:  2023-09-08
  • 刊出日期:  2023-12-31

目录

    /

    返回文章
    返回