留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深度卷积神经网络目标检测算法在煤矿断层检测上的应用

张春翔 唐烨锈 邹冠贵 曾义文 樊卓

张春翔, 唐烨锈, 邹冠贵, 曾义文, 樊卓. 深度卷积神经网络目标检测算法在煤矿断层检测上的应用[J]. 矿业科学学报, 2023, 8(6): 733-743. doi: 10.19606/j.cnki.jmst.2023.06.001
引用本文: 张春翔, 唐烨锈, 邹冠贵, 曾义文, 樊卓. 深度卷积神经网络目标检测算法在煤矿断层检测上的应用[J]. 矿业科学学报, 2023, 8(6): 733-743. doi: 10.19606/j.cnki.jmst.2023.06.001
Zhang Chunxiang, Tang Yexiu, Zou Guangui, Zeng Yiwen, Fan Zhuo. Deep convolutional neural network target detection algorithm for coal mine fault detection[J]. Journal of Mining Science and Technology, 2023, 8(6): 733-743. doi: 10.19606/j.cnki.jmst.2023.06.001
Citation: Zhang Chunxiang, Tang Yexiu, Zou Guangui, Zeng Yiwen, Fan Zhuo. Deep convolutional neural network target detection algorithm for coal mine fault detection[J]. Journal of Mining Science and Technology, 2023, 8(6): 733-743. doi: 10.19606/j.cnki.jmst.2023.06.001

深度卷积神经网络目标检测算法在煤矿断层检测上的应用

doi: 10.19606/j.cnki.jmst.2023.06.001
基金项目: 

国家重点研发计划 2018YFC0807803

国家自然科学基金 2022Z01010029

中国矿业大学(北京)大学生创新训练 202202050

详细信息
    作者简介:

    张春翔(2001—),男,山西吕梁人,主要从事地球物理学方面的研究工作。Tel:18518085887,E-mail:2010290523@student.cumtb.edu.cn

    通讯作者:

    邹冠贵(1981—),男,福建龙岩人,博士,教授,博士生导师,主要从事岩石物理及地震解释等方面的研究工作。Tel:18600544933,E-mail:cumtzgg@foxmail.com

  • 中图分类号: P315.2

Deep convolutional neural network target detection algorithm for coal mine fault detection

  • 摘要: 断层解释技术在煤矿安全开采领域起着至关重要的作用。随着神经网络技术的发展,许多基于神经网络算法的智能化地震资料解释处理方案被提出。首先通过对比不同的深度卷积神经网络目标检测算法,选择适合于识别断层的Faster R-CNN目标检测算法;其次建立具有多种地质特征的地震正演模型,分别对AlexNet、残差网络ResNet50和ResNet101三种特征提取网络进行测试,优选得出ResNet101特征提取网络在断层检测方面具有更加优异的表现;最后基于优选的ResNet101特征提取网络和Faster R-CNN目标检测算法构建断层检测模型,对实际地震数据进行断层检测。结果表明:基于深度卷积神经网络的目标检测算法在断层检测上具有很好的泛化能力,提高了断层的解释效率,在实际应用上具有巨大潜力。
  • 图  1  YOLO v1网络结构

    Figure  1.  YOLO v1 network structure

    图  2  R-CNN网络结构

    Figure  2.  R-CNN network structure

    图  3  Fast R-CNN网络结构

    Figure  3.  Fast R-CNN network structure

    图  4  正断层模型截图

    Figure  4.  Screenshot of the down fault model

    图  5  正断层模型地震记录截图

    Figure  5.  Screenshot of the down fault model seismic record

    图  6  逆断层模型截图

    Figure  6.  Screenshot of the thrust fault model

    图  7  逆断层模型地震记录截图

    Figure  7.  Screenshot of the thrust fault model seismic record

    图  8  断层正演模型标注

    Figure  8.  Fault forward model annotation

    图  9  3种特征提取网络的检测结果

    Figure  9.  Detection results of three feature extraction networks

    图  10  雨汪井田勘探区人工合成记录

    Figure  10.  Synthetic record of Yuwang well field exploration area

    图  11  原始剖面截图

    Figure  11.  Original section screenshot

    图  12  部分调整后截图

    Figure  12.  Screenshot after partial adjustment

    图  13  部分标注后截图

    Figure  13.  Screenshot after partial annotation

    图  14  检测结果

    Figure  14.  Test results

    图  15  较大剖面检测结果

    Figure  15.  Larger profile test results

    图  16  C2煤层方差体属性沿层切片平面

    Figure  16.  Plan view of C2 coal seam variance volume attributes along the layer

    图  17  已揭露的断层信息

    Figure  17.  Revealed fault information

    图  18  不同煤层的检测结果对比

    Figure  18.  Comparison of coal seams test results

    表  1  网络训练参数

    Table  1.   Network training parameters

    名称 参数
    trainingOptions sgdm
    Momentum 0.9
    MiniBatchSize 1
    InitialLearnRate 1e-4
    LearnRateSchedule piecewise
    LearnRateDorpFactor 0.1
    LearnRateDorpPeriod 5
    MaxEpochs 20
    CheckpointPath tempdir
    Verbose true
    下载: 导出CSV

    表  2  网络训练参数

    Table  2.   Network training parameters

    名称 参数
    trainingOptions sgdm
    Momentum 0.9
    MiniBatchSize 1
    InitialLearnRate 1e-3
    LearnRateSchedule piecewise
    LearnRateDorpFactor 0.1
    LearnRateDorpPeriod 8
    MaxEpochs 64
    CheckpointPath tempdir
    Verbose true
    下载: 导出CSV

    表  3  3种不同初始学习率准确率对比

    Table  3.   Accuracy comparison of three different initial learning rates

    初始学习率 平均准确率/% 时间/s
    1e-2 66.1 0.303
    1e-3 73.3 0.256
    1e-4 83.0 0.233
    下载: 导出CSV

    表  4  4种不同Max Epochs准确率对比

    Table  4.   Accuracy comparison of three different Max Epochs

    最大训练回合数 平均准确率/% 时间/s
    128 87.9 0.222
    256 90.9 0.213
    320 92.7 0.208
    400 93.3 0.204
    下载: 导出CSV

    表  5  以0.6置信度为标准的断层预测情况分析

    Table  5.   Fault prediction analysis based on 0.6 confidence

    煤层 正确识别 错误识别 准确率/%
    C3 6 2 75
    C7+8 3 2 60
    C9 5 2 71.4
    下载: 导出CSV
  • [1] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. doi: 10.1145/3065386
    [2] Lin M, Chen Q, Yan S. Network in network[Z/OL]. arXiv, 2014(2014-03-04).
    [3] Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks: visualising image classification models and saliency maps[EB/OL]. 2013: arXiv: 1312.6034. https://arxiv.org/abs/1312.6034.pdf.
    [4] Szegedy C, Liu W, Jia Y Q, et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 7-12, 2015, Boston, MA, USA. IEEE, 2015: 1-9.
    [5] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 770-778.
    [6] Zagoruyko S, Komodakis N. Wide residual networks[Z/OL]. arXiv, 2017(2017-06-14).
    [7] 吴帅, 徐勇, 赵东宁. 基于深度卷积网络的目标检测综述[J]. 模式识别与人工智能, 2018, 31(4): 335-346.

    Wu Shuai, Xu Yong, Zhao Dongning. Survey of object detection based on deep convolutional network[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(4): 335-346.
    [8] Xie S N, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 5987-5995.
    [9] Huang G, Liu S C, van der Maaten L, et al. CondenseNet: an efficient DenseNet using learned group convolutions[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018: 2752-2761.
    [10] Chen Y, Li J, Xiao H, et al. Dual path networks[C/OL]//Advances in Neural Information Processing Systems. Curran Associates, Inc., 2017.
    [11] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[EB/OL]. 2017: arXiv, 1709.01507. https://arxiv.org/abs/1709.01507.pdf.
    [12] Tingdahl K M, de Rooij M. Semi-automatic detection of faults in 3D seismic data[J]. Geophysical Prospecting, 2005, 53(4): 533-542. doi: 10.1111/j.1365-2478.2005.00489.x
    [13] Zheng Z H, Kavousi P, Di H B. Multi-attributes and neural network-based fault detection in 3D seismic interpretation[J]. Advanced Materials Research, 2013, 838/839/840/841: 1497-1502.
    [14] Jahan I, Castagna J, Murphy M, et al. Fault detection using principal component analysis of seismic attributes in the Bakken Formation, Williston Basin, North Dakota, USA[J]. Interpretation, 2017, 5(3): 361-372. doi: 10.1190/INT-2016-0209.1
    [15] 邹冠贵, 任珂, 吉寅, 等. 基于主成分分析和最近邻算法的断层识别研究[J]. 煤田地质与勘探, 2021, 49(4): 15-23.

    Zou Guangui, Ren Ke, Ji Yin, et al. Fault recognition based on principal component analysis and k-nearest neighbor algorithm[J]. Coal Geology & Exploration, 2021, 49(4): 15-23.
    [16] Huang L, Dong X S, Clee T E. A scalable deep learning platform for identifying geologic features from seismic attributes[J]. The Leading Edge, 2017, 36(3): 249-256. doi: 10.1190/tle36030249.1
    [17] Wu X M, Liang L M, Shi Y Z, et al. Fault Seg3D: using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation[J]. Geophysics, 2019, 84(3): 35-45. doi: 10.1190/geo2018-0646.1
    [18] 路远, 朱仕军, 朱鹏宇, 等. 利用信噪比差异体改进断层自动识别方法[J]. 地球物理学进展, 2014, 29(1): 155-158.

    Lu Yuan, Zhu Shijun, Zhu Pengyu, et al. Improved fault automatic identification using Signal-to-noise ratio cubes[J]. Progress in Geophysics, 2014, 29(1): 155-158.
    [19] 李鹏祥, 刘慧博. 基于卷积神经网络的煤矸识别系统的研究[J]. 自动化应用, 2021(9): 8-14, 19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDHT202109003.htm

    Li Pengxiang, Liu Huibo. Research on coal gangue identification system based on convolutional neural network[J]. Automation Application, 2021(9): 8-14, 19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDHT202109003.htm
    [20] 黄健, 张钢. 深度卷积神经网络的目标检测算法综述[J]. 计算机工程与应用, 2020, 56(17): 12-23.

    Huang Jian, Zhang Gang. Survey of object detection algorithms for deep convolutional neural networks[J]. Computer Engineering and Applications, 2020, 56(17): 12-23.
    [21] 朱弥雪, 刘志强, 张旭, 等. 林火视频烟雾检测算法综述[J]. 计算机工程与应用, 2022, 58(14): 16-26.

    Zhu Mixue, Liu Zhiqiang, Zhang Xu, et al. Review of research on video-based smoke detection algorithms[J]. Computer Engineering and Applications, 2022, 58(14): 16-26.
    [22] 包成耀, 丁霄霏, 戴立奇, 等. 基于YOLO的轻量化目标检测应用研究[J]. 电脑与电信, 2021(8): 26-29, 48. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDN202108008.htm

    Bao Chengyao, Ding Xiaofei, Dai Liqi, et al. Application research on lightweight target detection based on YOLO[J]. Computer & Telecommunication, 2021(8): 26-29, 48. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDN202108008.htm
    [23] 刘谱, 张兴会, 张志利, 等. 从RCNN到YOLO的目标检测综述[C/OL]. 中国高科技产业化研究会智能信息处理产业化分会, 2022: 16-23.

    Liu Pu, Zhang Xinghui, Zhang Zhili, et al. An overview of object detection from RCNN to YOLO[C/OL]. Intelligent Information Processing Industrialization Branch of China High-tech Industrialization Research Society, 2022: 16-23.
    [24] 李鹏飞, 刘瑶, 李珣, 等. YOLO9000模型的车辆多目标视频检测系统研究[J]. 计算机测量与控制, 2019, 27(8): 21-24, 29. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201908006.htm

    Li Pengfei, Liu Yao, Li Xun, et al. A detection method of multi-target for vehicles based on YOLO9000 model[J]. Computer Measurement & Control, 2019, 27(8): 21-24, 29. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201908006.htm
    [25] 郑伟成, 李学伟, 刘宏哲. 基于深度学习的目标检测算法综述[C/OL]. 中国计算机用户协会网络应用分会, 2018: 11-14, 34.

    Zheng Weicheng, Li Xuewei, Liu Hongzhe. A review of object detection algorithms based ondeep learning[C/OL]. Network Application Branch of China Computer Users Association, 2018: 11-14, 34.
    [26] Uijlings J R, Sande K E, Gevers T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154-171.
    [27] Girshick R. Fast R-CNN[Z/OL]. arXiv, 2015(2015-09-27).
    [28] Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
    [29] Huang J, Rathod V, Sun C, et al. Speed/accuracy trade-offs for modern convolutional object detectors[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 3296-3297.
    [30] 霍进杰, 于浩业, 董雪梅, 等. 地震正演模拟技术在准噶尔盆地西北缘七区地震解释中的应用[J]. 海洋石油, 2013, 33(4): 30-34.

    Huo Jinjie, Yu Haoye, Dong Xuemei, et al. Application of seismic forward modeling technique to seismic interpretation in seven areas in northwestern margin of Junggar Basin[J]. Offshore Oil, 2013, 33(4): 30-34.
  • 加载中
图(18) / 表(5)
计量
  • 文章访问数:  482
  • HTML全文浏览量:  108
  • PDF下载量:  260
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-24
  • 修回日期:  2023-07-02
  • 刊出日期:  2023-12-31

目录

    /

    返回文章
    返回