留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人机飞播参数优选与DSE浸种荞麦生态修复效应研究

毕银丽 张龙杰 白雪蕊

毕银丽, 张龙杰, 白雪蕊. 无人机飞播参数优选与DSE浸种荞麦生态修复效应研究[J]. 矿业科学学报, 2023, 8(5): 695-703. doi: 10.19606/j.cnki.jmst.2023.05.011
引用本文: 毕银丽, 张龙杰, 白雪蕊. 无人机飞播参数优选与DSE浸种荞麦生态修复效应研究[J]. 矿业科学学报, 2023, 8(5): 695-703. doi: 10.19606/j.cnki.jmst.2023.05.011
Bi Yinli, Zhang Longjie, Bai Xuerui. Study on parameters optimization of unmanned aerial vehicle and ecological remediation of buckwheat stained with DSE[J]. Journal of Mining Science and Technology, 2023, 8(5): 695-703. doi: 10.19606/j.cnki.jmst.2023.05.011
Citation: Bi Yinli, Zhang Longjie, Bai Xuerui. Study on parameters optimization of unmanned aerial vehicle and ecological remediation of buckwheat stained with DSE[J]. Journal of Mining Science and Technology, 2023, 8(5): 695-703. doi: 10.19606/j.cnki.jmst.2023.05.011

无人机飞播参数优选与DSE浸种荞麦生态修复效应研究

doi: 10.19606/j.cnki.jmst.2023.05.011
基金项目: 

国家重点研发计划 2022YFF1303303

国家自然科学基金 51974326

详细信息
    作者简介:

    毕银丽(1971—),女,陕西米脂人,博士,教授,博士生导师,主要从事矿山复垦与生态修复方面的研究工作。Tel:010-62339048,E-mail:ylbi88@126.com

  • 中图分类号: TD88

Study on parameters optimization of unmanned aerial vehicle and ecological remediation of buckwheat stained with DSE

  • 摘要: 陕北矿区地势复杂多变、地形沉陷及地裂缝导致机械生态修复困难,基于北方天途八旋翼无人机,以荞麦为试验对象,研究了飞播参数对无人机飞播作业的影响,并探究了深色有隔内生真菌(DSE)浸种后无人机飞播荞麦生态修复效应。结果表明:飞播参数对荞麦种子有效幅宽与飞播均匀性有显著影响,获得无人机最优飞播参数为高转速、飞行高度2.5 m、飞行速度4 m/s、作业间距6 m;该飞播参数下荞麦DSE接菌区,其生长期株高、地径和地上生物量分别比对照区提高了11%、25%、49%;接种DSE可有效提高荞麦叶片叶色值和光合速率,促进荞麦根系生长,提高荞麦产量和品质,无人机飞播联合DSE浸种促生技术可为西部煤矿区复杂地形生态修复奠定技术基础。
  • 图  1  无人机飞播装置示意图

    Figure  1.  Aerial seeding device for UAV

    图  2  荞麦种子飞播试验场地示意图

    Figure  2.  Schematic diagram of aerial seeding site for buckwheat seeds

    图  3  张家峁煤矿生态示范区示意图

    Figure  3.  Schematic diagram of ecological demonstration in Zhangjiamao coal mine

    图  4  无人机飞播作业路线A→B点

    Figure  4.  UAV aerial seeding route from A to B

    图  5  不同参数下无人机飞播荞麦作业效果

    Figure  5.  Effects of UAV parameters on aerial seeding of buckwheat

    图  6  接种DSE对荞麦根系侵染效果的影响

    Figure  6.  Effect of DSE infection on buckwheat root

    图  7  接种DSE对荞麦生长特性的影响

    Figure  7.  Effect of DSE infection on growth characteristics of buckwheat

    图  8  接种DSE对荞麦生长期SPAD值的影响

    Figure  8.  Effect of DSE infection on buckwheat SPAD

    表  1  北方天途M8A20A无人机平台基本参数

    Table  1.   Basic parameters of M8A20A eight-rotor UAV platform

    对称电机轴距/mm 旋翼数量 标准起飞重量/kg 最大载重/kg 飞行速度/(m·s-1) 作业间距/m 悬停时间/min
    1 630 8 46 20 2~8 2~20 6~22
    下载: 导出CSV

    表  2  荞麦光合作用差异

    Table  2.   Difference in photosynthesis of buckwheat

    处理 CK DSE
    净光合速率/
    μmol·(m2·s)-1
    16.25±0.87 16.56±0.3
    气孔导度/
    mol·(m2·s)-1
    0.33±0.15 0.35±0.13
    蒸腾速率/
    mmol·(m2·s)-1
    8.78±0.7 9.27±0.49
    下载: 导出CSV

    表  3  接种DSE对荞麦根系生长特性的影响

    Table  3.   Effect of DSE infectionon root growth of buckwheat

    处理 CK DSE DSE贡献率/%
    根尖/个 15±2 25±2 42.3
    总根长/mm 206.9±5.5 460.7±5.7 55.1
    根体积/mm3 24.2±2.3 48.4±0.5 50.0
    根表面积/mm2 222.9±5.9 509.7±4.1 56.3
    平均根直径/mm 0.34±0.09 0.38±0.11 11.9
    下载: 导出CSV

    表  4  接种DSE对荞麦产量和品质的影响

    Table  4.   Effect of DSE infection on yield and quality of buckwheat

    处理 产量/
    (kg·ha-1)
    可溶性蛋白含量/
    (mg·kg-1)
    可溶性糖含量/
    (mg·kg-1)
    CK 826 1.21±0.18 14.89±1.83
    DSE 1 036 1.67±0.16 16.53±3.77
    下载: 导出CSV
  • [1] 李国平, 郭江. 基于CVM的榆林煤炭矿区生态环境破坏价值损失研究—以神木县、府谷县和榆阳区为调研区域[J]. 干旱区资源与环境, 2012, 26(3): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201203004.htm

    Li Guoping, Guo Jiang. The loss of ecological environment damage in Yulin coal mining area due to resource development—taking Shenmu, Fugu, and Yuyang as the investigation regions[J]. Journal of Arid Land Resources and Environment, 2012, 26(3): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201203004.htm
    [2] 王双明, 范立民, 杨宏科. 陕北煤炭资源可持续发展之开发思路[J]. 中国煤田地质, 2003, 15(5): 6-8, 11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT200305001.htm

    Wang Shuangming, Fan Limin, Yang Hongke. Some thoughts on sustainable development of northen Shaanxi coal resources[J]. Coal Geology of China, 2003, 15(5): 6-8, 11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT200305001.htm
    [3] Bi Y L, Wang X, Cai Y, et al. Arbuscular mycorrhizal colonization increases plant above-belowground feedback in a northwest Chinese coal mining-degraded soil by increasing photosynthetic carbon assimilation and allocation to maize[J]. Environmental Science and Pollution Research, 2022, 29(48): 72612-72627. doi: 10.1007/s11356-022-19838-z
    [4] 杜善周, 毕银丽, 王义, 等. 丛枝菌根对神东煤矿区塌陷地的修复作用与生态效应[J]. 科技导报, 2010, 28(7): 41-44. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201007017.htm

    Du Shanzhou, Bi Yinli, Wang Yi, et al. The reclamation and ecological effects of arbuscular mycorrhiza on subsided land in Shendong coal mine areas[J]. Science & Technology Review, 2010, 28(7): 41-44. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201007017.htm
    [5] 尹礼国, 钟耕, 刘雄, 等. 荞麦营养特性、生理功能和药用价值研究进展[J]. 粮食与油脂, 2002, 15(5): 32-34. https://www.cnki.com.cn/Article/CJFDTOTAL-LSYY200205015.htm

    Yin Liguo, Zhong Geng, Liu Xiong, et al. Research progress on nutritional characteristics, physiological functions and medicinal value of buckwheat[J]. Journal of Cereals & Oils, 2002, 15(5): 32-34. https://www.cnki.com.cn/Article/CJFDTOTAL-LSYY200205015.htm
    [6] Bochtis D D, S Rensen C G C, Busato P. Advances in agricultural machinery management: a review[J]. Biosystems Engineering, 2014, 126: 69-81. doi: 10.1016/j.biosystemseng.2014.07.012
    [7] Knutson K C, Pyke D A, Wirth T A, et al. Long-term effects of seeding after wildfire on vegetation in Great Basin shrubland ecosystems[J]. Journal of Applied Ecology, 2014, 51(5): 1414-1424. doi: 10.1111/1365-2664.12309
    [8] Wu Z J, Li M L, Lei X L, et al. Simulation and parameter optimisation of a centrifugal rice seeding spreader for a UAV[J]. Biosystems Engineering, 2020, 192: 275-293. doi: 10.1016/j.biosystemseng.2020.02.004
    [9] 黄小毛, 徐胡伟, 张顺, 等. 油菜成条飞播装置设计与试验[J]. 农业工程学报, 2020, 36(5): 78-87. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU202005009.htm

    Huang Xiaomao, Xu Huwei, Zhang Shun, et al. Design and experiment of a device for rapeseed strip aerial seeding[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(5): 78-87. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU202005009.htm
    [10] Singh R C, Singh G, Saraswat D C. Optimisation of design and operational parameters of a pneumatic seed metering device for planting cottonseeds[J]. Biosystems Engineering, 2005, 92(4): 429-438.
    [11] 张青松, 张恺, 廖庆喜, 等. 油菜无人机飞播装置设计与试验[J]. 农业工程学报, 2020, 36(14): 138-147. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU202014018.htm

    Zhang Qingsong, Zhang Kai, Liao Qingxi, et al. Design and experiment of rapeseed aerial seeding device used for UAV[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(14): 138-147. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU202014018.htm
    [12] Fernández N V, Messuti M I, Fontenla S B. Occurrence of arbuscular mycorrhizas and dark septate endophytes in pteridophytes from a Patagonian rainforest, Argentina[J]. Journal of Basic Microbiology, 2013, 53(6): 498-508.
    [13] Berthelot C, Blaudez D, Leyval C. Differential growth promotion of poplar and birch inoculated with three dark septate endophytes in two trace element-contaminated soils[J]. International Journal of Phytoremediation, 2017, 19(12): 1118-1125.
    [14] Santos S G, da Silva P R A, Garcia A C, et al. Dark septate endophyte decreases stress on rice plants[J]. Brazilian Journal of Microbiology, 2017, 48(2): 333-341.
    [15] 张睿, 王秀, 赵春江, 等. 链条输送式变量施肥抛撒机的设计与试验[J]. 农业工程学报, 2012, 28(6): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201206006.htm

    Zhang Rui, Wang Xiu, Zhao Chunjiang, et al. Design and experiment of variable rate fertilizer spreader with conveyor chain[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(6): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201206006.htm
    [16] 左丛山, 陈柳清, 宋承琦, 等. 不同品种水稻无人机飞播与人工撒播对比试验[J]. 湖北农业科学, 2021, 60(S1): 36-38. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNY2021S1011.htm

    Zuo Congshan, Chen Liuqing, Song Chengqi, et al. Contrast test between unmanned aerial vehicle(UAV)aerial sowing and artificial sowing on production of different rice varieties[J]. Hubei Agricultural Sciences, 2021, 60(S1): 36-38. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNY2021S1011.htm
    [17] Kasim M U, Kasim R. While continuous white LED lighting increases chlorophyll content(SPAD), green LED light reduces the infection rate of lettuce during storage and shelf-life conditions[J]. Journal of Food Processing and Preservation, 2017, 41(6): 1-7.
    [18] 于瑞雪, 李少朋, 毕银丽, 等. 煤炭开采对沙蒿根系生长的影响及其自修复能力[J]. 煤炭科学技术, 2014, 42(2): 110-113. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201402030.htm

    Yu Ruixue, Li Shaopeng, Bi Yinli, et al. Effect of coal mining on root growth of artemisia sphaerocephala and its self-repairing ability[J]. Coal Science and Technology, 2014, 42(2): 110-113. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201402030.htm
    [19] Zohny M H, Cavalu S, Youssef M E, et al. Coomassie brilliant blue G-250 dye attenuates bleomycin-induced lung fibrosis by regulating the NF-κB and NLRP3 crosstalk: a novel approach for filling an unmet medical need[J]. Biomedicine & Pharmacotherapy, 2022, 148: 112723.
    [20] 袁蕊, 聂磊云, 郝兴宇, 等. 大气CO2浓度升高对辣椒光合作用及相关生理特性的影响[J]. 生态学杂志, 2017, 36(12): 3510-3516. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201712025.htm

    Yuan Rui, Nie Leiyun, Hao Xingyu, et al. Effects of elevated[CO2]on photosynthesis and relevant physiological characteristics of pepper(Capsicum annuum L.)[J]. Chinese Journal of Ecology, 2017, 36(12): 3510-3516. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201712025.htm
    [21] 许大全, 张玉忠, 张荣铣. 植物光合作用的光抑制[J]. 植物生理学通讯, 1992, 28(4): 237-243. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL199204000.htm

    Xu Daquan, Zhang Yuzhong, Zhang Rongxi. Photoinhibition of photosynthesis in plants[J]. Plant Physiology Communications, 1992, 28(4): 237-243. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL199204000.htm
    [22] Onnen N, Eltner A, Heckrath G, et al. Monitoring soil surface roughness under growing winter wheat with low-altitude UAV sensing: potential and limitations[J]. Earth Surface Processes and Landforms, 2020, 45(14): 3747-3759.
    [23] 宋灿灿, 周志艳, 姜锐, 等. 气力式无人机水稻撒播装置的设计与参数优化[J]. 农业工程学报, 2018, 34(6): 80-88, 307. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201806010.htm

    Song Cancan, Zhou Zhiyan, Jiang Rui, et al. Design and parameter optimization of pneumatic rice sowing device for unmanned aerial vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(6): 80-88, 307. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201806010.htm
    [24] Li J A, Yao Y X, Duan P, et al. Studies on three-dimensional(3D)modeling of UAV oblique imagery with the aid of loop-shooting[J]. ISPRS International Journal of Geo-Information, 2018, 7(9): 1-17.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  127
  • HTML全文浏览量:  23
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-25
  • 修回日期:  2023-05-18
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回