留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核磁共振无损检测泥岩水分迁移过程的新方法

李东阳 周星辰 刘波 张千里 刘景宇

李东阳, 周星辰, 刘波, 张千里, 刘景宇. 核磁共振无损检测泥岩水分迁移过程的新方法[J]. 矿业科学学报, 2023, 8(5): 654-662. doi: 10.19606/j.cnki.jmst.2023.05.007
引用本文: 李东阳, 周星辰, 刘波, 张千里, 刘景宇. 核磁共振无损检测泥岩水分迁移过程的新方法[J]. 矿业科学学报, 2023, 8(5): 654-662. doi: 10.19606/j.cnki.jmst.2023.05.007
Li Dongyang, Zhou Xingchen, Liu Bo, Zhang Qianli, Liu Jingyu. A new method for nondestructive testing of mudstone moisture migration process by nuclear magnetic resonance[J]. Journal of Mining Science and Technology, 2023, 8(5): 654-662. doi: 10.19606/j.cnki.jmst.2023.05.007
Citation: Li Dongyang, Zhou Xingchen, Liu Bo, Zhang Qianli, Liu Jingyu. A new method for nondestructive testing of mudstone moisture migration process by nuclear magnetic resonance[J]. Journal of Mining Science and Technology, 2023, 8(5): 654-662. doi: 10.19606/j.cnki.jmst.2023.05.007

核磁共振无损检测泥岩水分迁移过程的新方法

doi: 10.19606/j.cnki.jmst.2023.05.007
基金项目: 

国家自然科学基金 42172319

国家自然科学基金 41771083

中国矿业大学(北京)越崎青年基金 800015Z1200

详细信息
    作者简介:

    李东阳(1980— ),男,河南南阳人,博士,副教授,主要从事城市空间工程等方面的教学与研究工作。Tel:15501025827,E-mail:lidybj@163.com

  • 中图分类号: TU452

A new method for nondestructive testing of mudstone moisture migration process by nuclear magnetic resonance

  • 摘要: 利用传统方法测试岩土体内水分迁移时,往往要将原状土破碎和重塑,这会改变岩土体的结构,影响测试结果的真实性。利用核磁共振(NMR)技术具有无损测量材料中水分的特点,提出了一种新的测试方法。首先进行标定试验,将岩土试样放置在0~0.05 T的非均匀磁场中用不同的磁场强度测试,获得NMR信号量和试样水含量间的函数关系;然后对土样进行一维入渗试验与NMR测试,记录入渗时间、入渗水质量和不同位置条件下试样的NMR信号量;最后,根据标定试验所得NMR信号量与水含量之间的函数关系,计算获得试样中水分的空间分布。采用烘干法进行验证,试验结果与理论结果最大误差为4.05 %。
  • 图  1  MicroMR02-025 V核磁共振岩心分析仪

    Figure  1.  MicroMR02-025 V NMR core analyzer

    图  2  试验过程

    Figure  2.  Experimental process

    图  3  在均匀磁场与非均匀磁场中的不同位置对试样进行测试

    Figure  3.  Test the sample at different positions in the uniform and non-uniform magnetic field

    图  4  标定试样在磁场均匀和非均匀区的信号量实测值及其拟合曲线

    Figure  4.  The measured signal amplitude of the calibration sample in the uniform and non-uniform magnetic field and its fitting curve

    图  5  不同测试位置的横向弛豫时间T2的分布

    Figure  5.  Distribution of the transverse relaxation time T2 at different test positions

    图  6  信号量N的计算原理

    Figure  6.  Calculation principle of signal amplitude N

    图  7  一维入渗试验

    Figure  7.  One-dimensional infiltration experiment

    图  8  试样在各次测试中的横向弛豫时间分布

    Figure  8.  Transverse relaxation time distribution of the sample in each test

    图  9  理论信号量与实测信号量对比

    Figure  9.  Comparison between the calculated signal amplitudes and measured amplitudes

    图  10  长条形土柱中含水率的空间分布

    Figure  10.  Spatial distribution of water content in long soil column

    图  11  不同含水率时泥岩表面形态

    Figure  11.  Mudstone surface morphology with different water content

    表  1  矿物X-射线衍射分析结果

    Table  1.   Mineral X-ray diffraction analysis

    全岩矿物相对含量/% 黏土矿物相对含量/%
    石英 斜长石 微斜长石 黏土总量 I/S It Kao C
    33 9 6 52 80 15 3 2
    注:S为蒙脱石,It为伊利石,C为绿泥石,Kao为高岭石,I/S为伊蒙混层。
    下载: 导出CSV

    表  2  参数a与含水率w之间的关系

    Table  2.   The relationship between a and w

    a 5 011 4 605 4 363 4 135
    w/% 10 18 25 31
    下载: 导出CSV

    表  3  烘干泥岩试样在各测试位置的初始信号量

    Table  3.   The initial signal amplitude of dry mudstone samples at each test position

    测试位置/mm 0 8 16 24 32 40
    初始信号量 1 461 1 456 1 405 1 191 872 546
    下载: 导出CSV

    表  4  水分迁移试验数据

    Table  4.   Test data of moisture migration

    测试时间/h 试样总质量/g 试样中水的质量/g
    0 5.988 0 0
    24 6.612 0 0.624 0
    48 7.085 3 1.097 3
    72 7.496 5 1.508 5
    120 7.816 7 1.828 7
    下载: 导出CSV

    表  5  烘干法测试结果与NMR测试结果

    Table  5.   Drying method and NMR test results

    土柱分层 质量/g 烘干后试样的质量/g 土柱中水的质量/g NMR信号换算的水质量/g 误差/%
    1 1.544 4 0.989 8 0.554 6 0.577 1 4.05
    2 1.335 4 0.998 1 0.337 3 0.346 3 2.67
    3 1.263 3 0.996 0 0.267 3 0.277 0 3.64
    4 1.252 9 1.006 2 0.246 7 0.249 3 1.05
    5 1.196 8 1.002 9 0.193 9 0.199 4 2.85
    6 1.182 0 0.995 0 0.187 0 0.179 5 -3.99
    下载: 导出CSV
  • [1] 陈汉青, 程桦, 曹璐, 等. 土/岩体的冻融回滞及水分迁移综合机制研究[J]. 岩石力学与工程学报, 2022, 41(11): 2365-2375. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202211016.htm

    Chen Hanqing, Cheng Hua, Cao Lu, et al. Research on the comprehensive mechanism of freeze-thaw hysteresis and water migration of soil/rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(11): 2365-2375. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202211016.htm
    [2] 崔宏环, 闫利, 赵嘉. 高铁路基水泥粉煤灰填料冻融特性研究[J]. 铁道科学与工程学报, 2022, 19(10): 2785-2793. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202210001.htm

    Cui Honghuan, Yan Li, Zhao Jia. Study on freeze-thaw characteristics of cement fly ash filler for high-speed railway subgrade[J]. Journal of Railway Science and Engineering, 2022, 19(10): 2785-2793. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202210001.htm
    [3] 于钱米, 邰博文, 牛吉强, 等. 细粒土空间不均匀分布对水分迁移的影响[J]. 中南大学学报: 自然科学版, 2020, 51(12): 3503-3514. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202012024.htm

    Yu Qianmi, Tai Bowen, Niu Jiqiang, et al. Effect of unevenly distributed fine-grained soil in space on moisture migration[J]. Journal of Central South University: Science and Technology, 2020, 51(12): 3503-3514. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202012024.htm
    [4] 杨志浩, 岳祖润, 冯怀平. 非饱和粉土路基内水分迁移规律试验研究[J]. 岩土力学, 2020, 41(7): 2241-2251. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007011.htm

    Yang Zhihao, Yue Zurun, Feng Huaiping. Experimental study on moisture migration properties in unsaturated silty subgrade[J]. Rock and Soil Mechanics, 2020, 41(7): 2241-2251. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007011.htm
    [5] 肖泽岸, 朱霖泽, 侯振荣, 等. 水盐相变对硫酸盐渍土基质吸力影响规律研究[J]. 岩土工程学报, 2022, 44(10): 1935-1941. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202210020.htm

    Xiao Zean, Zhu Linze, Hou Zhenrong, et al. Effects of water/salt phase transition on matric suction of sulfate saline soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1935-1941. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202210020.htm
    [6] 郭剑峰, 陈正汉, 郭楠. 延安新区高填方工程的变形与水分迁移耦合分析[J]. 岩土工程学报, 2021, 43(S1): 143-148. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2021S1028.htm

    Guo Jianfeng, Chen Zhenghan, Guo Nan. Application of incremental nonlinear consolidation theory for unsaturated soil in high fill projects[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 143-148. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2021S1028.htm
    [7] Bruce R R, Klute A. The measurement of soil moisture diffusivity[J]. Soil Science Society of America Journal, 1956, 20(4): 458-462.
    [8] Turner N C, Parlange J Y. Two-dimensional similarity solution: theory and application to the determination of soil-water diffusivity[J]. Soil Science Society of America Journal, 1975, 39(3): 387-390.
    [9] Clothier B E, White I. Measurement of sorptivity and soil water diffusivity in the field[J]. Soil Science Society of America Journal, 1981, 45(2): 241-245.
    [10] van Grinsven J J M, Dirksen C, Bouten W. Evaluation of the hot air method for measuring soil water diffusivity[J]. Soil Science Society of America Journal, 1985, 49(5): 1093-1099.
    [11] Cassel D K, Warrick A W, Nielsen D R, et al. Soil-water diffusivity values based upon time dependent soil-water content distributions[J]. Soil Science Society of America Journal, 1968, 32(6): 774-777.
    [12] Warrick A W. Soil water diffusivity estimates from one-dimensional absorption experiments[J]. Soil Science Society of America Journal, 1994, 58(1): 72-77.
    [13] Valiantzas J D, Londra P, Sassalou A. Explicit formulae for soil water diffusivity using the one-step outflow technique[J]. Soil Science Society of America Journal, 2007, 71(6): 1685-1693.
    [14] Londra P A, Valiantzas J D. Soil water diffusivity determination using a new two-point outflow method[J]. Soil Science Society of America Journal, 2011, 75(4): 1343-1346.
    [15] 马丽娜, 严松宏, 王起才, 等. 客运专线无碴轨道泥岩地基原位浸水膨胀变形试验[J]. 岩石力学与工程学报, 2015, 34(8): 1684-1691. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201508021.htm

    Ma Lina, Yan Songhong, Wang Qicai, et al. In-situ tests on swelling deformation of mudstone foundation upon soaking under ballastless track of passenger railway line[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(8): 1684-1691. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201508021.htm
    [16] Li X, Zhang L M, Fredlund D G. Wetting front advancing column test for measuring unsaturated hydraulic conductivity[J]. Canadian Geotechnical Journal, 2009, 46(12): 1431-1445.
    [17] Zhang F, Zhang X L, Li Y J, et al. Quantitative description theory of water migration in rock sites based on infrared radiation temperature[J]. Engineering Geology, 2018, 241: 64-75.
    [18] Wang Z, Lu J H, Wu L S, et al. Visualizing preferential flow paths using ammonium carbonate and a pH indicator[J]. Soil Science Society of America Journal, 2002, 66(2): 347-351.
    [19] Espejo A, Giráldez J V, Vanderlinden K, et al. A method for estimating soil water diffusivity from moisture profiles and its application across an experimental catchment[J]. Journal of Hydrology, 2014, 516: 161-168.
    [20] Zhang M Z, Ye G, van Breugel K. Microstructure-based modeling of water diffusivity in cement paste[J]. Construction and Building Materials, 2011, 25(4): 2046-2052.
    [21] Khalilin, Russellar, Khoshghalba. Unsaturated-soils: research and applications[M]. UK, London: CRC Press, 2014: 1155-1161.
    [22] 李杰林, 刘汉文. 冻融循环作用下砂岩孔隙体积变形模型的建立与分析[J]. 冰川冻土, 2018, 40(6): 1173-1180. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201806011.htm

    Li Jielin, Liu Hanwen. Establishment and analysis of the volumetric deformation model of sandstone pores under the effect of freezing-thawing cycles[J]. Journal of Glaciology and Geocryology, 2018, 40(6): 1173-1180. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201806011.htm
    [23] 李海波, 朱巨义, 郭和坤. 核磁共振T2谱换算孔隙半径分布方法研究[J]. 波谱学杂志, 2008, 25(2): 273-280. https://www.cnki.com.cn/Article/CJFDTOTAL-PPXZ200802017.htm

    Li Haibo, Zhu Juyi, Guo Hekun. Methods for calculating pore radius distribution in rock from NMR T2 spectra[J]. Chinese Journal of Magnetic Resonance, 2008, 25(2): 273-280. https://www.cnki.com.cn/Article/CJFDTOTAL-PPXZ200802017.htm
    [24] Dlubac K, Knight R, Song Y Q, et al. Use of NMR logging to obtain estimates of hydraulic conductivity in the High Plains aquifer, Nebraska, USA[J]. Water Resources Research, 2013, 49(4): 1871-1886.
    [25] Carpenter T A, Davies E S, Hall C, et al. Capillary water migration in rock: process and material properties examined by NMR imaging[J]. Materials and Structures, 1993, 26(5): 286-292.
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  35
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-04
  • 修回日期:  2023-03-30
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回