留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂地形地貌对下伏煤岩层应力影响规律研究

张大明 付松 李刚

张大明, 付松, 李刚. 复杂地形地貌对下伏煤岩层应力影响规律研究[J]. 矿业科学学报, 2023, 8(4): 548-559. doi: 10.19606/j.cnki.jmst.2023.04.011
引用本文: 张大明, 付松, 李刚. 复杂地形地貌对下伏煤岩层应力影响规律研究[J]. 矿业科学学报, 2023, 8(4): 548-559. doi: 10.19606/j.cnki.jmst.2023.04.011
Zhang Daming, Fu Song, Li Gang. The influence of complex topography on the stress of underlying coal strata[J]. Journal of Mining Science and Technology, 2023, 8(4): 548-559. doi: 10.19606/j.cnki.jmst.2023.04.011
Citation: Zhang Daming, Fu Song, Li Gang. The influence of complex topography on the stress of underlying coal strata[J]. Journal of Mining Science and Technology, 2023, 8(4): 548-559. doi: 10.19606/j.cnki.jmst.2023.04.011

复杂地形地貌对下伏煤岩层应力影响规律研究

doi: 10.19606/j.cnki.jmst.2023.04.011
基金项目: 

国家自然科学基金 51774165

详细信息
    作者简介:

    张大明(1979—),男,辽宁沈阳人,博士,副教授,硕士生导师,主要从事矿山压力及其控制方面的科研与教学工作。Tel:13841818195,E-mail:zdm0418@163.com

    通讯作者:

    付松(1997—),男,贵州毕节人,硕士研究生,主要从事矿山压力及其控制方面的科研工作。Tel:15186095740,E-mail:1020914176@qq.com

  • 中图分类号: TD311

The influence of complex topography on the stress of underlying coal strata

  • 摘要: 为了掌握地表的山体和山体间的沟谷区域等复杂地形地貌对下伏煤岩层应力的影响规律,本文通过理论分析构建了山体下煤岩层垂直应力计算模型,并以禾草沟煤矿50205工作面为背景,研究了复杂地形地貌对下伏煤岩层荷载作用特征及应力传递规律。结果表明:山体荷载对浅部煤层具有较明显的应力影响,在水平方向上影响明显范围与山体坡度呈负相关性,影响范围系数与山体坡度成正相关性,山体对下伏煤层垂直应力影响特征可分为初始影响、剧烈增长影响和缓慢增长影响3个阶段;沟谷区域下伏煤岩层垂直应力叠加数值呈现随深度变化先增大后减小的特征,且当两山体相邻间距大于山体底面宽度1.25倍时,应力叠加效应很小,可忽略不计;随着相邻山体间距逐渐增大,沟谷区域下伏煤岩层形成一个应力叠加不明显的倒三角区域。
  • 图  1  山体荷载作用下基础内应力扩散示意图

    Figure  1.  Schematic diagram of foundation internal stress diffusion under mountain load

    图  2  集中荷载P作用在半平面体的边界上

    Figure  2.  Concentrated load P is on the boundary of the semi-plane body

    图  3  山体荷载作用平面图

    Figure  3.  Mountain load plan

    图  4  不同深度水平截面上的垂直应力曲线

    Figure  4.  Vertical stress curves on horizontal cross sections at different depths

    图  5  山体荷载在弹性基础内的垂直应力σZ曲线

    Figure  5.  Vertical stress σZ curve of mountain load in elastic foundation

    图  6  相邻山体不同间距垂直应力叠加影响曲线

    Figure  6.  Influence curve of vertical stress superimposed with different spacing of gully

    图  7  50205工作面井上下局部对照

    Figure  7.  Local comparison of upper and lower wells in 50205 working face

    图  8  50205工作面5号煤层赋存深度曲线

    Figure  8.  Curve of occurrence depth of No.5 coal seam in 50205 working face

    图  9  不同山体高度下数值模型

    Figure  9.  Numerical models different mountain height

    图  10  不同山体荷载下煤岩层垂直应力等值线

    Figure  10.  Vertical stress isoline map of coal strata under mountain load

    图  11  山体不同坡度下煤岩层垂直应力等值线

    Figure  11.  Vertical stress isolines of coal strata under different slopes of mountain

    图  12  30°山体荷载下煤岩层垂直应力等值线

    Figure  12.  Vertical stress isoline map of coal strata under 30° mountain load

    图  13  山体不同坡度时垂直应力影响明显范围

    Figure  13.  Range of significant influence of vertical stress in different slopes of mountains

    图  14  上坡段山体荷载下垂直应力曲线

    Figure  14.  Vertical stress curve of the uphill section under mountain load

    图  15  相邻山体不同间距时5号煤层垂直应力等值线

    Figure  15.  Vertical stress contour map of No.5 coal seam with different spacing of adjacent mountains

    图  16  相邻山体不同间距时5号煤层垂直应力曲线

    Figure  16.  Vertical stress curve of No.5 coal seam with different spacing of adjacent mountain

    表  1  相邻山体不同间距沟谷中央下伏煤岩层垂直应力叠加值

    Table  1.   Vertical stress superposition values of the coal strata under the central gullies at different intervals of adjacent mountains

    间距/m 埋深/m
    0 1B 2B 3B 4B 5B 6B 7B 8B 9B 10B 11B
    0 0.20P 0.56P 0.60P 0.52P 0.45P 0.39P 0.35P 0.32P 0.30P 0.28P 0.25P 0.21P
    1B 0.20P 0.40P 0.41P 0.39P 0.37P 0.35P 0.32P 0.29P 0.26P 0.24P 0.20P
    2B 0.31P 0.35P 0.34P 0.33P 0.31P 0.30P 0.28P 0.26P 0.23P 0.20P
    3B 0.28P 0.30P 0.31P 0.28P 0.26P 0.24P 0.22P 0.20P
    4B 0.20P 0.23P 0.26P 0.25P 0.24P 0.22P 0.20P
    5B 0.20P 0.21P 0.20P
    注:“—”表示沟谷中央下伏煤岩层垂直应力叠加值小于0.2P,可忽略不计。
    下载: 导出CSV

    表  2  山体和山体下基部模型尺寸

    Table  2.   Model dimensions of mountain and base under mountain  m

    山体高度 山体模型尺寸 基部模型尺寸
    50 200 200 50 2 000 200 400
    100 400 200 100 3 000 200 600
    150 600 200 150 3 000 200 800
    下载: 导出CSV

    表  3  煤岩物理力学参数

    Table  3.   Physical and mechanical parameters of coal and rock

    煤岩名称 容重/(kg·m-3) 抗拉强度/MPa 抗压强度/MPa 弹性模量/MPa 泊松比/μ 内聚力/MPa 内摩擦角/(°)
    泥岩 2 570 1.89 20.29 10 190 0.29 1.97 31
    中粒砂岩 2 282 1.70 42.96 24 617 0.23 4.53 34
    细粒砂岩 2 320 1.60 50.94 33 482 0.21 4.21 32
    粉砂岩 2 462 1.86 31.16 22 365 0.26 4.6 32
    油页岩 2 371 1.70 37.36 17 033 0.25 3.98 30
    泥质粉砂岩 2 370 2.1 32.20 24 967 0.27 3.98 30
    5号煤层 1 321 0.61 15.92 4 900 0.28 1.96 30
    下载: 导出CSV

    表  4  不同山体高度下煤岩层不同埋深时垂直应力值

    Table  4.   Vertical stress values of coal strata at different mountain heights and different buried depths

    煤岩层埋深/m 50 m 100 m 150 m
    N/MPa Y/MPa S N/MPa Y/MPa S N/MPa Y/MPa S
    1B 1.19 1.84 1.55 2.38 3.83 1.61 3.46 5.53 1.60
    2B 2.38 2.88 1.21 4.71 5.78 1.22 6.98 8.46 1.21
    3B 3.51 3.85 1.10 7.06 7.83 1.11 10.38 11.44 1.10
    4B 4.71 5.02 1.06 9.37 10.01 1.07 13.85 14.75 1.06
    5B 5.93 6.19 1.04 11.72 12.24 1.04 17.33 18.07 1.03
    6B 7.06 7.27 1.03 13.90 14.34 1.03
    注:N表示煤岩层未受山体影响垂直应力值;Y表示煤岩层受山体影响下最大垂直应力值;S表示沟谷区域煤岩层垂直应力影响系数,S=Y/N
    下载: 导出CSV
  • [1] 周涛, 宁琛瑶, 王琛, 等. 地表山体对煤层原岩应力场分布规律的影响[J]. 煤炭技术, 2014, 33(5): 141-144. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201405053.htm

    Zhou Tao, Ning Chenyao, Wang Chen, et al. Influence of surface mountain on distribution law of stress field of coal seam original rock[J]. Coal Technology, 2014, 33(5): 141-144. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201405053.htm
    [2] 吴亚军. 山体下部岩层原岩应力场分布规律研究[J]. 山西焦煤科技, 2014(S1): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-XSKJ2014S1009.htm

    Wu Yajun. Study on the stress field distribution of proto-rock in the lower part of mountain[J]. Shanxi Coking Coal Science and Technology, 2014(S1): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-XSKJ2014S1009.htm
    [3] 董洪生. 山体赋存煤层原岩应力分布规律[J]. 能源技术与管理, 2010(6): 14-16. https://www.cnki.com.cn/Article/CJFDTOTAL-JSMT201006008.htm

    Dong Hongsheng. Stress distribution law of original rock of the mountain coal seam[J]. Energy Technology and Management, 2010(6): 14-16. https://www.cnki.com.cn/Article/CJFDTOTAL-JSMT201006008.htm
    [4] 李建伟, 刘长友, 赵杰, 等. 沟谷区域浅埋煤层采动矿压发生机理及控制研究[J]. 煤炭科学技术, 2018, 46(9): 104-110. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201809017.htm

    Li Jianwei, Liu Changyou, Zhao Jie, et al. Study on mechanism and control of mining pressure in shallow buried coal seam in gully area[J]. Coal Science and Technology, 2018, 46(9): 104-110. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201809017.htm
    [5] 赵二雷. 浅埋煤层过沟开采矿压显现规律及防治水措施[J]. 陕西煤炭, 2018, 37(5): 126-128. https://www.cnki.com.cn/Article/CJFDTOTAL-SXMJ201805038.htm

    Zhao Erlei. Law of pressure appearing in mining of shallow buried coal seam through gully and water prevention measures[J]. Shanxi Coal, 2018, 37(5): 126-128. https://www.cnki.com.cn/Article/CJFDTOTAL-SXMJ201805038.htm
    [6] 胡殿科, 康侯应, 王鹏举, 等. 毛家庄冲沟近距离煤层开采矿压显现规律研究[J]. 煤炭技术, 2014, 33(11): 316-319. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201411114.htm

    Hu Dianke, Kang Houying, Wang Pengju, et al. Study on the law of pressure appearing in close seam gully mining in Maojiazhuang[J]. Coal Technology, 2014, 33(11): 316-319. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201411114.htm
    [7] 王旭锋, 张东升, 卢鑫, 等. 浅埋煤层沙土质冲沟坡体下开采矿压显现特征[J]. 煤炭科学技术, 2010, 38(6): 18-22. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201006008.htm

    Wang Xufeng, Zhang Dongsheng, Lu Xin, et al. Characteristics of mining pressure under sandy gully slope of shallow buried coal seam[J]. Coal Science and Technology, 2010, 38(6): 18-22. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201006008.htm
    [8] 单仁亮, 黄博, 宋永威, 等. 新峪矿采空区下近距离巷道矿压特征研究[J]. 矿业科学学报, 2016, 1(1): 29-37. http://kykxxb.cumtb.edu.cn/article/id/7

    Shan Renliang, Huang Bo, Song Yongwei et al. Study on ore pressure characteristics of close roadway under goaf of Xinyu mine[J]. Journal of Miming Science and Technology, 2016, 1(1): 29-37. http://kykxxb.cumtb.edu.cn/article/id/7
    [9] Li J W, Liu C Y, Zhao T. Effects of gully terrain on stress field distribution and ground pressure behavior in shallow seam mining[J]. International Journal of Mining Science and Technology, 2016, 26(2): 255-260. doi: 10.1016/j.ijmst.2015.12.011
    [10] Zhao T B, Zhang Z Y, Tan Y L, et al. An innovative approach to thin coal seam mining of complex geological conditions by pressure regulation[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 71: 249-257. doi: 10.1016/j.ijrmms.2014.05.021
    [11] 许家林, 朱卫兵, 王晓振, 等. 沟谷地形对浅埋煤层开采矿压显现的影响机理[J]. 煤炭学报, 2012, 37(2): 179-185. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201202002.htm

    Xu Jialin, Zhu Weibing, Wang Xiaozhen, et al. Influence mechanism of gully topography on pressure manifestation in shallow seam mining[J]. Journal of China Coal Society, 2012, 37(2): 179-185. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201202002.htm
    [12] 赵杰, 刘长友, 李建伟, 等. 沟谷区域浅埋煤层工作面覆岩破断及矿压显现特征[J]. 煤炭科学技术, 2017, 45(1): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201701006.htm

    Zhao Jie, Liu Changyou, Li Jianwei, et al. Characteristics of overburden fracture and ore pressure in shallow coal seam working face in gully area[J]. Coal Science and Technology, 2017, 45(1): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201701006.htm
    [13] 王方田, 屠世浩, 张艳伟, 等. 冲沟地貌下浅埋煤层开采矿压规律及顶板控制技术[J]. 采矿与安全工程学报, 2015, 32(6): 877-882. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201506002.htm

    Wang Fangtian, Tu Shihao, Zhang Yanwei, et al. Mining pressure law and roof control technology of shallow buried coal seam under gully landform[J]. Journal of Mining & Safety Engineering, 2015, 32(6): 877-882. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201506002.htm
    [14] 张志强, 许家林, 刘洪林, 等. 沟深对浅埋煤层工作面矿压的影响规律研究[J]. 采矿与安全工程学报, 2013, 30(4): 501-505, 511. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201304006.htm

    Zhang Zhiqiang, Xu Jialin, Liu Honglin, et al. Study on influence law of gully depth on ore pressure in shallow seam working face[J]. Journal of Mining & Safety Engineering, 2013, 30(4): 501-505. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201304006.htm
    [15] 张志强. 沟谷地形对浅埋煤层工作面动载矿压的影响规律研究[D]. 徐州: 中国矿业大学, 2011.
    [16] 张志强, 许家林, 王路, 等. 沟谷坡角对浅埋煤层工作面矿压影响的研究[J]. 采矿与安全工程学报, 2011, 28(4): 560-565. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201104013.htm

    Zhang Zhiqiang, Xu Jialin, Wang Lu, et al. Study on influence of gully slope angle on ore pressure in shallow seam working face[J]. Journal of Mining & Safety Engineering, 2011, 28(4): 560-565. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201104013.htm
    [17] 王宏志, 刘洪林, 宋帅帅, 等. 沟谷地形下近浅埋煤层工作面矿压显现规律研究[J]. 中国矿业, 2020, 29(9): 116-120. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA202009022.htm

    Wang Hongzhi, Liu Honglin, Song Shuaishuai, et al. Study on the law of ore pressure in the working face of near shallow buried coal seam in gully terrain[J]. China Mining, 2020, 29(9): 116-120. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA202009022.htm
    [18] 陆士良. 岩巷的矿压显现与合理位置[M]. 北京: 煤炭工业出版社, 1984: 1-13.
    [19] 王志强, 徐春虎, 王鹏, 等. 孤岛工作面顶底板应力传递规律数值模拟研究[J]. 矿业科学学报, 2020, 5(1): 67-75. http://kykxxb.cumtb.edu.cn/article/id/266

    Wang Zhiqiang, Xu Chunhu, Wang Peng, et al. Study on numerical simulation of stress transfer law of isolated working face in top and bottom plate[J]. Journal of Mining Science and Technology, 2020, 5(1): 67-75. http://kykxxb.cumtb.edu.cn/article/id/266
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  27
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-29
  • 修回日期:  2023-03-08
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回