留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

砂岩颗粒流平行黏结模型宏细观参数关联性研究

吴禄源 朱永恒 白海波 冯义 李辉 苏承东

吴禄源, 朱永恒, 白海波, 冯义, 李辉, 苏承东. 砂岩颗粒流平行黏结模型宏细观参数关联性研究[J]. 矿业科学学报, 2023, 8(4): 487-501. doi: 10.19606/j.cnki.jmst.2023.04.005
引用本文: 吴禄源, 朱永恒, 白海波, 冯义, 李辉, 苏承东. 砂岩颗粒流平行黏结模型宏细观参数关联性研究[J]. 矿业科学学报, 2023, 8(4): 487-501. doi: 10.19606/j.cnki.jmst.2023.04.005
Wu Luyuan, Zhu Yongheng, Bai Haibo, Feng Yi, Li Hui, Su Chengdong. Study on the correlation of macro and meso parameters of parallel bond model sandstone[J]. Journal of Mining Science and Technology, 2023, 8(4): 487-501. doi: 10.19606/j.cnki.jmst.2023.04.005
Citation: Wu Luyuan, Zhu Yongheng, Bai Haibo, Feng Yi, Li Hui, Su Chengdong. Study on the correlation of macro and meso parameters of parallel bond model sandstone[J]. Journal of Mining Science and Technology, 2023, 8(4): 487-501. doi: 10.19606/j.cnki.jmst.2023.04.005

砂岩颗粒流平行黏结模型宏细观参数关联性研究

doi: 10.19606/j.cnki.jmst.2023.04.005
基金项目: 

国家自然科学基金 41977238

河南省博士后科研项目 202103049

河南省高等学校重点科研项目 23A440005

详细信息
    作者简介:

    吴禄源(1989—),男,河南汝州人,博士,讲师,硕士生导师,主要从事地下工程突水灾害机理及防治技术等方面的研究工作。Tel:15152107861,E-mail:wulymp@henu.edu.cn

  • 中图分类号: TU452

Study on the correlation of macro and meso parameters of parallel bond model sandstone

  • 摘要: 为研究砂岩细观层面的力学响应及破坏特征,本文首先开展室内岩石压缩试验和基于平行黏结模型的PFC2D单轴宏细观参数关联性数值试验;然后采用试错法确定各细观参数对宏观力学指标的影响程度排序,并进行显著因子交互作用分析;最终利用回归分析建立宏细观参数间函数关系;运用控制变量法研究岩样裂纹演化及破坏形式的主要影响因素。研究结果表明:①单轴抗压强度σc与平行黏聚力c、黏结法向强度σc、黏结内摩擦角φ呈非线性关系;②弹性模量E与黏结模量E*、黏结刚度比k*呈多项式关系;③泊松比vk*、摩擦系数μ呈线性关系;④抗拉强度σtcσc呈较好的线性关系;⑤岩样裂纹演化与破坏形式主要受黏结强度比σc/c影响,其与拉伸裂纹数目负相关,与剪切裂纹数目正相关;随σc/c增大,岩样的破坏形式呈拉伸破坏—共轭破坏—剪切破坏的变化特征。室内试验和数值模拟的单轴压缩σ-ε演化规律及破坏形式基本一致。
  • 图  1  平行黏结模型原理及组成

    Figure  1.  Principle and composition of parallel bonding model

    图  2  PFC2D模型平行黏结的失效包络线

    Figure  2.  Failure envelope of parallel bonding in the PFC2D model

    图  3  试验系统、砂岩岩样及安装

    Figure  3.  Test system, sandstone rock samples and installation

    图  4  多因素方差分析F统计量

    Figure  4.  Multivariate analysis of variance F statistic

    图  5  单轴抗压强度UCS与各显著因子间的关系

    Figure  5.  Relationship between UCS of uniaxial compressive strength and significant factors

    图  6  弹性模量E与各显著因子间的关系

    Figure  6.  Relationship between elastic modulus E and significant factors

    图  7  泊松比v与各显著因子间的关系

    Figure  7.  Relationship between Poisson's ratio v and significant factors

    图  8  不同σc/c下各裂纹数目

    Figure  8.  The number of each crack under different σc/c

    图  9  不同σc/c比下数值岩样的破坏形式

    Figure  9.  Failure modes of numerical rock samples at different σc/c ratios

    图  10  不同k*下各类型裂纹数量

    Figure  10.  Number of cracks of different types under different k*

    图  11  数值单轴压力下不同刚度比k*的岩石破坏形式

    Figure  11.  Failure modes of rocks with different stiffness ratios k* under numerical uniaxial compression

    图  12  不同φ下各类型裂纹数量

    Figure  12.  Number of cracks of different types under different φ

    图  13  数值单轴压力下不同内摩擦角φ的岩石破坏形式

    Figure  13.  Rock failure mode with different internal friction angle φ under numerical uniaxial pressure

    图  14  数值单轴压力下不同μE*的裂纹数目

    Figure  14.  Numerical number of cracks in different μ and E* under uniaxial pressure

    图  15  数值单轴压力下不同摩擦系数μ的岩石破坏形式

    Figure  15.  Rock failure modes with different friction coefficients μ under numerical uniaxial pressure

    图  16  数值单轴压力下不同黏结模量E*的岩石破坏形式

    Figure  16.  Failure modes of rocks with different bond model E* under numerical uniaxial compression

    图  17  PFC2D细观参数校准流程

    Figure  17.  The calibration of microparameters of PFC2D

    图  18  室内试验和数值试验的单轴压缩σ-ε曲线对比

    Figure  18.  Uniaxial compression for laboratory and numerical tests σ-ε curve comparison

    图  19  数值试验与室内试验岩样的破坏形态

    Figure  19.  Failure modes of rock samples from numerical and laboratory test

    表  1  PFC2D平行黏结模型主要宏细观参数表

    Table  1.   Main macro and micro parameters of PFC2D parallel bonding model

    宏观参数 细观参数
    平行黏结细观参数 颗粒细观参数
    单轴抗压强度 σc/MPa 平行黏结法向强度 σc/MPa 颗粒摩擦系数 μ
    抗拉强度 σt/MPa 平行黏结切向强度 τc/MPa 颗粒最小半径 Rmin/mm
    弹性模量 E/GPa 平行黏结模量 E*/GPa 颗粒密度 ρ/(kg·m-3)
    泊松比 v 平行黏结内摩擦角 φ/(°) 颗粒刚度比 k*=kn/ks
    内摩擦角 φ/(°) 平行黏结力 c/MPa 颗粒半径比 Rmax/Rmin
    平行黏结半径乘子 λ 颗粒接触模量 EC/GPa
    平行黏结刚度比 k*=kn/ks
    下载: 导出CSV

    表  2  PFC2D平行黏结模型细观参数水平

    Table  2.   Level table of meso parameters of PFC2D parallel bonding model

    细观参数 因子水平
    1 2 3 4 5
    σc/MPa 10 30 50 70 90
    E*/GPa 10 20 30 40 50
    φ/(°) 15 25 35 45 55
    k*=kn/ks 1 2 3 4 5
    c/MPa 15 30 45 60 75
    μ 0.15 0.25 0.35 0.45 0.55
    下载: 导出CSV

    表  3  基于PFC2D平行黏结模型宏细观参数关系数值模拟结果

    Table  3.   Numerical simulation results of fine macro parameter relationship based on PFC2D parallel bonding model

    试验编号 细观参数影响因素及因子水平取值 宏观参数模拟结果
    σc/MPa E*/GPa φ/(°) k*=kn/ks c/MPa μ σc/MPa E/GPa v σt(σt/σc)/MPa
    1 10 10 15 5 15 0.15 20.12 13.03 0.38 2.11 (0.104)
    2 30 20 35 3 75 0.15 61.4 24.5 0.32 7.11 (0.115)
    3 70 50 55 4 75 0.45 110.12 58.30 0.31 19.65 (0.178)
    4 50 10 35 4 30 0.45 65.0 45.0 0.29 6.45 (0.100)
    $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
    46 50 30 15 4 30 0.35 70.70 34.80 0.33 6.29 (0.088)
    47 10 20 35 1 30 0.55 20.00 31.50 0.06 3.85 (0.192)
    48 90 10 35 4 60 0.45 125.87 12.18 0.31 25.21 (0.200)
    下载: 导出CSV

    表  4  PFC2D不同黏结强度比下数值单轴压缩岩石破坏形式

    Table  4.   Numerical uniaxial compression rock failure modes under different bond strength ratios of PFC2D

    黏结强度比σc/c 0.25 0.5 0.75 1.0 1.33 1.66 2.0 2.3 2.7 3.0 3.5 4.0
    破坏形式 张拉 张拉 张拉 张拉 张拉 共轭 共轭 共轭 共轭 共轭 剪切 剪切
    下载: 导出CSV

    表  5  平行黏结模型细观参数

    Table  5.   Microscopic parameter of parallel bond model

    试验编号 σc/MPa E*/GPa φ/(°) k* c/MPa μ
    A1 35.5 9.47 15 3.2 76.85 0.55
    B1 25.8 15.1 35 2.1 57.33 0.55
    B2 18.8 4.40 35 2.5 30.55 0.50
    C1 14.0 3.90 15 3.0 26.30 0.55
    C2 36.1 5.20 25 3.0 68.30 0.52
    C3 27.5 7.60 20 2.0 49.50 0.30
    下载: 导出CSV

    表  6  岩石的宏观力学参数试验值与模拟值对比

    Table  6.   Comparison between experimental and simulated values of macro mechanical parameters of rock

    试验编号 数值模拟 室内试验 误差率/%
    σc/MPa E/GPa v σt(σt/σc) σc/MPa E/GPa v σt/MPa σc E v σt
    A1 98.98 17.43 0.19 7.11(0.071) 96.11 16.58 0.18 6.52 2.89 4.87 5.15 9.04
    B1 68.53 11.55 0.18 6.12(0.089) 70.02 12.02 0.17 5.83 2.12 3.91 6.06 4.73
    B2 33.43 8.84 0.19 4.95(0.148) 35.85 8.51 0.21 4.51 6.95 3.87 9.52 8.88
    C1 23.41 4.61 0.20 2.27(0.096) 25.15 4.98 0.21 2.41 6.77 7.42 4.76 6.16
    C2 74.72 9.91 0.24 6.83(0.091) 72.61 9.81 0.23 6.31 2.82 1.01 4.16 8.24
    C3 60.23 15.9 0.18 4.89(0.081) 61.70 15.33 0.19 4.46 2.38 3.71 3.15 9.64
    下载: 导出CSV
  • [1] Wu L Y, Wang Z, Ma D, et al. A continuous damage statistical constitutive model for sandstone and mudstone based on triaxial compression tests[J]. Rock Mechanics and Rock Engineering, 2022, 55: 4963-4978. doi: 10.1007/s00603-022-02924-6
    [2] Wu L Y, Ma D, Wang Z F, et al. A deep CNN-based constitutive model for describing of statics characteristics of rock materials[J]. Engineering Fracture Mechanics, 2023, 279: 109054. doi: 10.1016/j.engfracmech.2023.109054
    [3] Aydan Ö. Rock mechanics and rock engineering: volume 1: fundamentals of rock mechanics[M]. Florida: CRC Press, 2019.
    [4] 郝保钦, 张昌锁, 王晨龙, 等. 岩石PFC2D模型细观参数确定方法研究[J]. 煤炭科学技术, 2022, 50(4): 132-141. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202204013.htm

    Hao Baoqin, Zhang Changsuo, Wang Chenlong, et al. Study on determination micro-parameters of rock PFC2D model[J]. Coal Science and Technology, 2022, 50(4): 132-141. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202204013.htm
    [5] 石崇, 张强, 王盛年. 颗粒流(PFC5.0)数值模拟技术及应用[J]. 岩土力学, 2018, 39(S2): 36. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2005.htm

    Shi Chong, Zhang Qiang, Wang Shengnian. Numerical simulation technology of particle flow (PFC5.0) and its application[J]. Rock and Soil Mechanics, 2018, 39(S2): 36. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2005.htm
    [6] Cundall P, Strack O. Discussion: a discrete numerical model for granular assemblies[J]. Geotechnique, 1980, 30: 331-336. doi: 10.1680/geot.1980.30.3.331
    [7] 李坤, 程谦恭, 林棋文, 等. 高速远程滑坡颗粒流研究进展[J]. 地球科学, 2022(3): 893-912. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202203012.htm

    Li Kun, Cheng Qiangong, Lin Qiwen, et al. State of the art on rock avalanche dynamics from granular flow mechanics[J]. Earth Science, 2022(3): 893-912. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202203012.htm
    [8] 胡训健, 卞康, 刘建, 等. 离散裂隙网络对岩石力学性质和声发射特性影响的颗粒流分析[J]. 岩土力学, 2022, 43(S1): 542-552. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2022S1054.htm

    Hu Xunjian, Bian Kang, Liu Jian, et al. Particle flow code analysis of the effect of discrete fracture network on rock mechanical properties and acoustic emission characteristics[J]. Rock and Soil Mechanics, 2022, 43(S1): 542-552. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2022S1054.htm
    [9] Wei W J, Yang S L, Li M, et al. Motion mechanisms for top coal and gangue blocks in longwall top coal caving (LTCC) with an extra-thick seam[J]. Rock Mechanics and Rock Engineering, 2022, 55(8): 5107-5121. doi: 10.1007/s00603-022-02928-2
    [10] 晏莉, 吕超慧, 喻少华, 等. 近邻双孔隧道围岩联合压力拱试验与数值分析[J]. 北京交通大学学报, 2022, 46(3): 103-109. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT202203012.htm

    Yan Li, Lü Chaohui, Yu Shaohua, et al. Test and numerical analysis on combined pressure arch of surrounding rock in adjacent twin tunnels[J]. Journal of Beijing Jiaotong University, 2022, 46(3): 103-109. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT202203012.htm
    [11] 李涛, 朱连华, 李彬如, 等. 深基坑开挖土拱效应影响因素研究[J]. 中国矿业大学学报, 2017, 46(1): 58-65. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201701008.htm

    Li Tao, Zhu Lianhua, Li Binru, et al. Study of the influence factors of soal arching effect for deep founding pit excavation[J]. Journal of China University of Mining & Technology, 2017, 46(1): 58-65. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201701008.htm
    [12] 邓益兵, 杨彦骋, 史旦达, 等. 三维离散元大尺度模拟中变粒径方法的优化及其应用[J]. 岩土工程学报, 2017, 39(1): 62-70. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701005.htm

    Deng Yibing, Yang Yancheng, Shi Danda, et al. Refinement and application of variable particle-sizemethodsin 3D discrete element modelling for large-scale problems[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 62-70. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701005.htm
    [13] Itasca Consulting Group lnc. PFC2D users manual (version 5.0)[R]. Minnesota: Itasca Consulting Group lnc., 2016.
    [14] 阿比尔的, 郑颖人, 冯夏庭, 等. 平行黏结模型宏细观力学参数相关性研究[J]. 岩土力学, 2018, 39(4): 1289-1301. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804019.htm

    A Bierdi, Zheng Yingren, Feng Xiating, et al. Relationship between particle micro and macro mechanical parameters of parallel-bond model[J]. Rock and Soil Mechanics, 2018, 39(4): 1289-1301. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804019.htm
    [15] Yang S Q, Yin P, Huang Y H. Experiment and discrete element modelling on strength, deformation and failure behaviour of shale under Brazilian compression[J]. Rock Mechanics and Rock Engineering, 2019, 52(7): 4339-4359.
    [16] 周喻, 吴顺川, 焦建津, 等. 基于BP神经网络的岩土体细观力学参数研究[J]. 岩土力学, 2011, 32(12)3821-3826. doi: 10.3969/j.issn.1000-7598.2011.12.045

    Zhou Yu, Wu Shunchuan, Jiao Jianjin, et al. Research on mesomechanical parameters of rock and soil mass based on BP neural network[J]. Rock and Soil Mechanics, 2011, 32(12)3821-3826. doi: 10.3969/j.issn.1000-7598.2011.12.045
    [17] Yoon J. Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(6): 871-889. doi: 10.1016/j.ijrmms.2007.01.004
    [18] Xu Z H, Wang Z Y, Wang W Y, et al. An integrated parameter calibration method and sensitivity analysis of microparameters on mechanical behavior of transversely isotropic rocks[J]. Computers and Geotechnics, 2022, 142: 104573. doi: 10.1016/j.compgeo.2021.104573
    [19] 陈鹏宇, 孔莹, 余宏明. 岩石单轴压缩PFC2D模型细观参数标定研究[J]. 地下空间与工程学报, 2018, 14(5): 1240-1249. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201805013.htm

    Chen Pengyu, Kong Ying, Yu Hongming. Research on the calibration method of microparameters of a uniaxial compression PFC2D model for rock[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(5): 1240-1249. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201805013.htm
    [20] 丛宇, 王在泉, 郑颖人, 等. 基于颗粒流原理的岩石类材料细观参数的试验研究[J]. 岩土工程学报, 2015(6): 1031-1040. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506010.htm

    Cong Yu, Wang Zaiquan, Zheng Yingren, et al. Experimental study on microscopic parameters of brittle materials based on particle flow theory[J]. Chinese Journal of Geotechnical Engineering, 2015(6): 1031-1040. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506010.htm
    [21] Nardin A, Schrefler B A. Modelling of cutting tool-soil interaction-part Ⅱ: macromechanical model and upscaling[J]. Computational Mechanics, 2005, 36(5): 343-359. doi: 10.1007/s00466-005-0658-5
    [22] 王一伟, 刘润, 孙若晗, 等. 基于抗转模型的颗粒材料宏-细观关系研究[J]. 岩土力学, 2022, 43(4): 945-956, 968. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202204009.htm

    Wang Yiwei, Liu Run, Sun Ruohan, et al. Macroscopic and mesoscopic correlation of granular materials based on rolling resistance linear contact model[J]. Rock and Soil Mechanics, 2022, 43(4): 945-956, 968. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202204009.htm
    [23] 崔蓬勃, 朱永全, 刘勇, 等. 非饱和砂土隧道土拱效应模型试验及颗粒流数值模拟研究[J]. 岩土力学, 2021, 42(12): 3451-3466. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202112024.htm

    Cui Pengbo, Zhu Yongquan, Liu Yong, et al. Model test and particle flow numerical simulation of soil arch effect for unsaturated sandy soil tunnel[J]. Rock and Soil Mechanics, 2021, 42(12): 3451-3466. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202112024.htm
    [24] 中华人民共和国住房和城乡建设部. 工程岩体试验方法标准: GB/T 50266-2013[S]. 北京: 中国计划出版社, 2013.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of engineering rock mass: GB/T 50266-2013[S]. Beijing: China Planning Press, 2013.
    [25] Potyondy D O, Cundall P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364. doi: 10.1016/j.ijrmms.2004.09.011
    [26] Dang Z H, Yin Z M, Wang D S, et al. Experimental study on the calibration of microparameters of dolomite in the barun open-pit mine on the basis of the parallel bond model[J]. Advances in Civil Engineering, 2021, 2021: 1-11.
    [27] 许明, 张永兴. 岩石力学[M]. 4版. 北京: 中国建筑工业出版社, 2020.
    [28] 苏承东, 付义胜. 红砂岩三轴压缩变形与强度特征的试验研究[J]. 岩石力学与工程学报, 2014, 33(S1): 3164-3169. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1080.htm

    Su Chengdong, Fu Yisheng. Experimental study of triaxial compression deformation and strength characteristics of red sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 3164-3169. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1080.htm
    [29] 周杰, 汪永雄, 周元辅. 基于颗粒流的砂岩三轴破裂演化宏-细观机理[J]. 煤炭学报, 2017, 42(S1): 76-82. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2017S1011.htm

    Zhou Jie, Wang Yongxiong, Zhou Yuanfu. Macro-micro evolution mechanism on sandstone failure in triaxial compression test based on PFC. 2d[J]. Journal of China Coal Society, 2017, 42(S1): 76-82. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2017S1011.htm
    [30] 刘相如, 杨圣奇. 基于正交试验的岩石细观力学参数数值研究[J]. 应用基础与工程科学学报, 2018, 26(4): 918-928. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201804020.htm

    Liu Xiangru, Yang Shengqi. Research on mesomechanical parameters of rock specimens based on orthogonal numerical tests[J]. Journal of Basic Science and Engineering, 2018, 26(4): 918-928. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201804020.htm
    [31] 王朝阳, 林鹏, 许振浩, 等. 横观各向同性岩体平直光滑节理双模型细观参数联合标定方法[J]. 中南大学学报: 自然科学版, 2022, 53(6): 2211-2223. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202206022.htm

    Wang Zhaoyang, Lin Peng, Xu Zhenhao, et al. A transversely isotropic rocks integrated microparameter calibration method for flat joint model and smooth joint model[J]. Journal of Central South University: Science and Technology, 2022, 53(6): 2211-2223. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202206022.htm
    [32] 徐金明, 谢芝蕾, 贾海涛. 石灰岩细观力学特性的颗粒流模拟[J]. 岩土力学, 2010, 31(S2): 390-395. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S2070.htm

    Xu Jinming, Xie Zhilei, Jia Haitao. Simulation of mesomechanical properties of limestone using particle flow code[J]. Rock and Soil Mechanics, 2010, 31(S2): 390-395. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S2070.htm
  • 加载中
图(19) / 表(6)
计量
  • 文章访问数:  256
  • HTML全文浏览量:  77
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-22
  • 修回日期:  2023-02-19
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回