留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同预制温度煤岩冻融损伤及渗流特性研究

齐消寒 刘阳 杨雪松 朱同光 王品 侯双荣

齐消寒, 刘阳, 杨雪松, 朱同光, 王品, 侯双荣. 不同预制温度煤岩冻融损伤及渗流特性研究[J]. 矿业科学学报, 2023, 8(4): 474-486. doi: 10.19606/j.cnki.jmst.2023.04.004
引用本文: 齐消寒, 刘阳, 杨雪松, 朱同光, 王品, 侯双荣. 不同预制温度煤岩冻融损伤及渗流特性研究[J]. 矿业科学学报, 2023, 8(4): 474-486. doi: 10.19606/j.cnki.jmst.2023.04.004
Qi Xiaoghan, Liu Yang, Yang Xuesong, Zhu Tongguang, Wang Pin, Hou Shuangrong. Experimental study on freeze-thaw damage and seepage characteristics of coal rock at different prefabrication temperatures[J]. Journal of Mining Science and Technology, 2023, 8(4): 474-486. doi: 10.19606/j.cnki.jmst.2023.04.004
Citation: Qi Xiaoghan, Liu Yang, Yang Xuesong, Zhu Tongguang, Wang Pin, Hou Shuangrong. Experimental study on freeze-thaw damage and seepage characteristics of coal rock at different prefabrication temperatures[J]. Journal of Mining Science and Technology, 2023, 8(4): 474-486. doi: 10.19606/j.cnki.jmst.2023.04.004

不同预制温度煤岩冻融损伤及渗流特性研究

doi: 10.19606/j.cnki.jmst.2023.04.004
基金项目: 

教育部重点实验室开放基金 JSK202010

详细信息
    作者简介:

    齐消寒(1987—),男,河北石家庄人,博士,讲师,硕士生导师,主要从事矿山岩石力学、矿井灾害防治方面的研究工作。Tel:18342363755,E-mail:qxh871225@126.com

  • 中图分类号: TD731

Experimental study on freeze-thaw damage and seepage characteristics of coal rock at different prefabrication temperatures

  • 摘要: 为探究温度对煤岩冻融损伤及渗流特性的影响规律,采用煤岩三轴伺服实验系统对煤样进行加温、加温液氮冻融、加温饱水液氮冻融3种预处理方法开展煤岩细观损伤演化及力学、渗流特征实验。研究结果表明:预热温度越高结构损伤越严重,同一温度下饱水液氮冻融煤样的损伤大于液氮冻融煤样和仅加温煤样,损伤程度与波速呈负相关,与端面损伤合维数呈正相关;不同预处理方法下,三轴抗压强度大的煤样,破坏前变形程度小;3种预处理方法都会导致煤样内部孔裂隙增多易破碎,形成裂隙网络,煤样增透效果为加温饱水液氮冻融大于仅加温和加温液氮冻融。因此,工程实践中可探索使用预热-注水-注液氮冻融的技术实现煤层高效增透,提高瓦斯抽采效果。
  • 图  1  超声波探测仪及气体质量控制器设备

    Figure  1.  Ultrasonic detector and gas quality controller equipment

    图  2  实验系统

    Figure  2.  Experimental system

    图  3  不同预热温度试件波速变化曲线

    Figure  3.  Wave speed variation curve of specimens with different preheating temperatures

    图  4  煤样端面裂隙二值化处理

    Figure  4.  Binarization of coal sample end face fracture

    图  5  不同温度煤样端面裂隙演化特征

    Figure  5.  Characterization of fracture evolution at the end face of coal samples at different temperatures

    图  6  裂隙宽度变化

    Figure  6.  Variation of fracture width

    图  7  端面损伤盒维数

    Figure  7.  Dimension of end-face damage box

    图  8  轴压加载不同温度的应力应变曲线

    Figure  8.  Stress-strain curves for axial compression loading at different temperatures

    图  9  轴压加载相同温度的应力应变曲线

    Figure  9.  Stress-strain curve for axial compression loading at the same temperature

    图  10  轴压加载不同温度的体积应变

    Figure  10.  Volume strain at different temperatures for axial compression loading

    图  11  图像测量技术原理示意图

    Figure  11.  Principle of image measurement technology

    图  12  100 ℃下3种煤样加载初始及最终时刻的体积应变等值线

    Figure  12.  Volume strain contours of the initial and final moments of loading for three coal samples at 100 ℃

    图  13  轴压加载剪切应变的综合变形程度

    Figure  13.  Integrated deformation degree of axial compression loaded shear strain

    图  14  轴压加载剪切应变分布

    Figure  14.  Shear strain distribution under axial compression loading

    图  15  不同温度及轴压加载流量

    Figure  15.  Axial loading flow at different temperatures

    图  16  相同温度轴压加载流量

    Figure  16.  Axial pressure loading flow at the same temperature

    表  1  煤样不同预处理条件超声波特性参数

    Table  1.   Ultrasonic characteristic parameters of coal samples with different pretreatment conditions

    处理条件 处理温度/℃ 波速v/ (km·s-1) 时间T/μs 振幅A/dB
    加温 50 1.81 55.32 110.04
    75 1.69 55.40 108.63
    100 1.41 61.22 101.34
    200 1.23 70.57 96.38
    液氮冻融 50 1.54 62.36 101.12
    75 1.51 63.44 93.65
    100 1.35 77.38 81.26
    200 1.21 78.63 97.64
    饱水液氮冻融 50 1.40 80.21 85.34
    75 1.23 81.48 83.12
    100 1.02 82.43 80.87
    200 0.83 85.19 84.36
    下载: 导出CSV

    表  2  煤样端面损伤参数

    Table  2.   Damage parameters of coal sample end face

    试验条件 温度/℃ 最大裂隙宽度/mm 盒维数DB
    加温 50 0.48 1.23
    75 1.02 1.41
    100 2.43 1.86
    200 3.52 2.17
    液氮冻融 50 1.16 1.55
    75 1.85 1.68
    100 2.92 2.04
    200 3.76 2.38
    饱水液氮冻融 50 1.54 1.77
    75 2.17 2.05
    100 3.24 2.32
    200 4.25 2.69
    下载: 导出CSV

    表  3  轴压加载剪切应变数据

    Table  3.   Axial compression loading shear strain

    温度/℃ 实验条件 5≥a>0 10≥b>0 c>10 综合变形程度A
    50 加温 116 22 6 23.4
    液氮冻融 105 32 7 26.8
    饱水液氮冻融 92 29 23 32.3
    75 加温 108 29 7 25.9
    液氮冻融 93 31 20 31.7
    饱水液氮冻融 78 36 30 37.2
    100 加温 92 28 24 32.4
    液氮冻融 83 39 22 34.9
    饱水液氮冻融 57 22 65 47.0
    200 加温 70 40 34 40.0
    液氮冻融 64 31 49 43.3
    饱水液氮冻融 48 47 49 48.1
    下载: 导出CSV

    表  4  气体渗流量

    Table  4.   Gas seepage volume

    实验条件 温度/℃ 轴压加载的流量/(L·min-1)
    加温 50 1.23
    75 2.94
    100 3.54
    200 9.09
    液氮冻融 50 2.81
    75 4.68
    100 20.04
    200 28.02
    饱水液氮冻融 50 3.51
    75 12.66
    100 23.85
    200 37.41
    下载: 导出CSV
  • [1] 李勇, 胡海涛, 王延斌, 等. 煤层气井低产原因及二次改造技术应用分析[J]. 矿业科学学报, 2022, 7(1): 55-70. doi: 10.19606/j.cnki.jmst.2022.01.006

    Li Yong, Hu Haitao, Wang Yanbin, et al. Analysis of low production coalbed methane wells and application of secondary reconstruction technologies[J]. Journal of Mining Science and Technology, 2022, 7(1): 55-70. doi: 10.19606/j.cnki.jmst.2022.01.006
    [2] 武世亮. 冻融对煤体损伤及瓦斯放散影响实验研究[D]. 徐州: 中国矿业大学, 2017.
    [3] Winkler E M. Frost damage to stone and concrete: geological considerations[J]. Engineering Geology, 1968, 2(5): 315-323. doi: 10.1016/0013-7952(68)90010-0
    [4] 黄路云. 低温循环冷冻作用下岩石损伤试验与机理研究[D]. 武汉: 湖北工业大学, 2020.
    [5] 苏善杰. 低渗煤体液氮致裂作用与增透机理研究[D]. 徐州: 中国矿业大学, 2021.
    [6] 楚亚培. 液氮冻融煤体孔隙裂隙结构损伤演化规律及增渗机制研究[D]. 重庆: 重庆大学, 2020.
    [7] 常铎. 冻融循环条件下煤体致裂影响因素与机理研究[D]. 焦作: 河南理工大学, 2020.
    [8] Wei J P, Zhang L L, Li B, et al. Non-uniformity of coal damage caused by liquid nitrogen freeze-thaw[J]. Journal of Natural Gas Science and Engineering, 2019, 69: 102946. doi: 10.1016/j.jngse.2019.102946
    [9] Li B, Shi Z, Wang Z Q, et al. Effect of liquid nitrogen freeze-thaw cycles on pore structure development and mechanical properties of coal[J]. ACS Omega, 2022, 7(6): 5206-5216. doi: 10.1021/acsomega.1c06296
    [10] 史宏财. 高温预损伤下煤岩蠕变声发射及分形特征[J]. 煤田地质与勘探, 2020, 48(2): 187-194. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202002028.htm

    Shi Hongcai. Creep acoustic emission and fractal characteristics of coal rock under high temperature pre-damage[J]. Coal Geology & Exploration, 2020, 48(2): 187-194. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202002028.htm
    [11] 王勇, 孟巧荣, 高力, 等. 热解无烟煤微细观孔裂隙结构随温度的演化规律[J]. 煤炭学报, 2020, 45(S1): 300-307. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2020S1032.htm

    Wang Yong, Meng Qiaorong, Gao Li, et al. Evolution law of micro-meso pore-fracture structure of anthracite in pyrolysis[J]. Journal of China Coal Society, 2020, 45(S1): 300-307. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2020S1032.htm
    [12] Richter D, Simmons G. Thermal expansion behavior of igneous rocks[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1974(11): 403-411.
    [13] 齐消寒, 马恒, 王晓琪, 等. 热冲击对煤岩细观损伤及力学特性影响研究[J]. 中国安全科学学报, 2020, 30(12): 85-92. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202012012.htm

    Qi Xiaohan, Ma Heng, Wang Xiaoqi, et al. Impacts of thermal shocks on meso-damage and mechanical properties of coal[J]. China Safety Science Journal, 2020, 30(12): 85-92. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202012012.htm
    [14] 马占国, 茅献彪, 李玉寿, 等. 温度对煤力学特性影响的实验研究[J]. 矿山压力与顶板管理, 2005, 22(3): 46-48. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL200503018.htm

    Ma Zhanguo, Mao Xianbiao, Li Yushou, et al. Experimental study on the influence of temperature on coal mechanical properties[J]. Ground Pressure and Strata Control, 2005, 22(3): 46-48. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL200503018.htm
    [15] 姜波, 秦勇, 金法礼. 煤变形的高温高压实验研究[J]. 煤炭学报, 1997, 22(1): 80-84. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB701.016.htm

    Jiang Bo, Qin Yong, Jin Fali. Coal deformation test under high temperature and confining pressure[J]. Journal of China Coal Society, 1997, 22(1): 80-84. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB701.016.htm
    [16] 许江, 张丹丹, 彭守建, 等. 温度对含瓦斯煤力学性质影响的试验研究[J]. 岩石力学与工程学报, 2011, 30(S1): 2730-2735. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1018.htm

    Xu Jiang, Zhang Dandan, Peng Shoujian, et al. Experimental research on influence of temperature on mechanical properties of coal containing methane[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 2730-2735. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1018.htm
    [17] 李智威. 煤体热损伤裂隙发育及渗流特性研究[D]. 徐州: 中国矿业大学, 2018.
    [18] 王伟, 张村, 吴山西, 等. 垮落带破碎煤岩样循环加卸载渗流特征实验研究[J]. 矿业科学学报, 2020, 5(4): 374-381. http://kykxxb.cumtb.edu.cn/article/id/301

    Wang Wei, Zhang Cun, Wu Shanxi, et al. Experinmental study on seepage characterisics of broken coal and rock samples in caving zone under cyclic loading and unloading[J]. Journal of Mining Science and Technology, 2020, 5(4): 374-381. http://kykxxb.cumtb.edu.cn/article/id/301
    [19] 王凯, 赵恩彪, 郭阳阳, 等. 中间主应力影响下含瓦斯复合煤岩体变形渗流及能量演化特征研究[J]. 矿业科学学报, 2023, 8(1): 74-82. doi: 10.19606/j.cnki.jmst.2023.01.007

    Wang Kai, Zhao Enbiao, Guo Yangyang, et al. Deformation, seepage and energy evolution characteristics of gas-bearing coal-rock under intermediate principal stress[J]. Journal of Mining Science and Technology, 2023, 8(1): 74-82. doi: 10.19606/j.cnki.jmst.2023.01.007
    [20] 徐超, 秦亮亮, 李晓敏, 等. 加卸载煤体损伤-渗透特性影响因素实验研究[J]. 矿业科学学报, 2021, 6(3): 280-289. doi: 10.19606/j.cnki.jmst.2021.03.004

    Xu Chao, Qin Liangliang, Li Xiaomin, et al. Experimental study on influence factors in damage-permeability characteristics of loading and unloading coal[J]. Journal of Mining Science and Technology, 2021, 6(3): 280-289. doi: 10.19606/j.cnki.jmst.2021.03.004
    [21] 郝宪杰, 袁亮, 王飞, 等. 三轴压缩煤样破坏规律及剪切强度参数的反演[J]. 中国矿业大学学报, 2017, 46(4): 730-738. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201704005.htm

    Hao Xianjie, Yuan Liang, Wang Fei, et al. Analysis of failure of coal under tri-axial compression and inversion of its shear strength parameters[J]. Journal of China University of Mining & Technology, 2017, 46(4): 730-738. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201704005.htm
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  32
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-20
  • 修回日期:  2023-02-10
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回