留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西南地区节理化薄层软岩隧道大变形力学机理及支护控制方法

陶志刚 李梦楠 张博 李慧茹 史广诚

陶志刚, 李梦楠, 张博, 李慧茹, 史广诚. 西南地区节理化薄层软岩隧道大变形力学机理及支护控制方法[J]. 矿业科学学报, 2023, 8(4): 452-463. doi: 10.19606/j.cnki.jmst.2023.04.002
引用本文: 陶志刚, 李梦楠, 张博, 李慧茹, 史广诚. 西南地区节理化薄层软岩隧道大变形力学机理及支护控制方法[J]. 矿业科学学报, 2023, 8(4): 452-463. doi: 10.19606/j.cnki.jmst.2023.04.002
Tao Zhigang, Li Mengnan, Zhang Bo, Li Huiru, Shi Guangcheng. Mechanical mechanism of large deformation and support control for jointed thin soft rock tunnel in Southwest China[J]. Journal of Mining Science and Technology, 2023, 8(4): 452-463. doi: 10.19606/j.cnki.jmst.2023.04.002
Citation: Tao Zhigang, Li Mengnan, Zhang Bo, Li Huiru, Shi Guangcheng. Mechanical mechanism of large deformation and support control for jointed thin soft rock tunnel in Southwest China[J]. Journal of Mining Science and Technology, 2023, 8(4): 452-463. doi: 10.19606/j.cnki.jmst.2023.04.002

西南地区节理化薄层软岩隧道大变形力学机理及支护控制方法

doi: 10.19606/j.cnki.jmst.2023.04.002
基金项目: 

深部岩土力学与地下工程国家重点实验室创新基金 SKLGDUEK202201

详细信息
    作者简介:

    陶志刚(1981—),男,河北邯郸人,博士,教授,博士生导师,主要从事岩体力学与工程灾害控制等方面的研究和教学工作。Tel:010-51733713,E-mail:taozhigang1981@163.com

    通讯作者:

    史广诚(1990—),男,河南焦作人,博士,主要从事滑坡灾害机理和监测预警等方面的研究工作。Tel:010-51733713,E-mail:shiguangcheng1990@163.com

  • 中图分类号: U45

Mechanical mechanism of large deformation and support control for jointed thin soft rock tunnel in Southwest China

  • 摘要: 针对西南山区高地应力软岩隧道支护结构破坏、围岩大变形等问题,以云南昌宁隧道为工程背景,分析了隧道围岩大变形破坏模式及力学机理,开展了软岩隧道NPR锚索应力补偿支护技术应用研究工作。首先采用现场勘查和室内试验的方法,对隧道地质条件及破坏成因进行分析;然后,研究了昌宁隧道影响围岩稳定性的主要控制因素和围岩破坏模式,提出了以NPR锚索为核心的应力补偿支护技术;最后,通过现场试验分析了NPR锚网耦合支护条件下昌宁隧道围岩控制效果。结果表明:岩层挤压弯折和层间剪切滑移是昌宁隧道围岩破坏的主要模式;以NPR锚索为核心的应力补偿支护技术能有效控制隧道围岩初期支护大变形,隧道围岩最大变形量从2 150 mm降低到100 mm以内,效果显著。研究成果可为软岩隧道大变形的防治提供参考。
  • 图  1  昌宁隧道地质剖面

    Figure  1.  Geological profile of Changning Tunnel

    图  2  隧道的围岩特征

    Figure  2.  Surrounding rock characteristics of tunnel

    图  3  隧道不同里程下岩体单轴强度

    Figure  3.  Uniaxial strength of rock mass at different mileage of tunnel

    图  4  岩样品纵面扫描

    Figure  4.  Longitudinal scanning of rock

    图  5  隧道走向与水平主应力关系

    Figure  5.  Relationship between tunnel strike and horizontal principal stress

    图  6  原支护条件下昌宁隧道围岩的破坏特征

    Figure  6.  Failure characteristics of surrounding rock of Changning Tunnel in original support scheme

    图  7  昌宁隧道围岩的破坏模式

    Figure  7.  Failure mode of surrounding rock in Changning Tunnel

    图  8  隧道围岩岩层分区

    Figure  8.  Tunnel surrounding rock stratum zoning

    图  9  隧道围岩结构层受力图

    Figure  9.  Stress diagram of surrounding rock structure layer of tunnel

    图  10  结构层的形式

    Figure  10.  Form of structural layer

    图  11  结构层的极限位移

    Figure  11.  Limit displacement of structural floor

    图  12  开挖应力补偿原理

    Figure  12.  Stress compensation principle

    图  13  NPR锚索及其结构

    Figure  13.  NPR anchor cable and its structure

    图  14  监测设备

    Figure  14.  Test section and monitoring section

    图  15  现场试验段的监测结果

    Figure  15.  Monitoring results of rield test section

    表  1  全岩矿物X-射线衍射分析

    Table  1.   X-ray diffraction analysis of whole rock minerals %

    样品号 矿物含量
    石英 钾长石 斜长石 石盐 黏土矿物
    左肩 38.5 0.5 7.8 1.7 51.5
    右肩 28.4 0.7 17.8 1.6 51.5
    下载: 导出CSV

    表  2  黏土矿物X-射线衍射分析

    Table  2.   X-ray diffraction analysis of clay minerals %

    样品号 黏土矿物相对含量
    S It K C
    左肩 6 46 48
    右肩 5 56 39
    注:S为蒙皂石类;It为伊利石;K为高岭石;C为绿泥石。
    下载: 导出CSV

    表  3  昌宁隧道原支护设计参数

    Table  3.   Original supporting parameters of Changning tunnel

    衬砌类型 项目 型号 长度/m 厚度/cm 间距/cm
    初期支护 中空注浆锚杆 ϕ25 mm 3.5 100×60
    钢筋网 ϕ8 mm 20×20
    钢拱架 Ⅰ20 60
    二次支护 钢筋混凝土 C30 50
    下载: 导出CSV

    表  4  NPR锚网耦合支护方案关键参数设计

    Table  4.   Design of key parameters of NPR anchor-net coupling support scheme

    位置 支护关键技术参数 断面设计图
    上台阶 NPR锚索:L=10 300 mm,P≥300 kN,间排距=2 000 mm×1 200 mm;
    普通锚索:L=6 300mm,P≥300 kN,间排距=1 000 mm×1 200 mm;
    NPR增强支护:左右各增设2根NPR锚索,L=10 300 mm,P≥300 kN,间排距= 2 000 mm×1 200 mm;
    金属网:D=8 mm,M=100 mm×100 mm;
    混凝土:H=270 mm
    中台阶 NPR锚索:L=10 300 mm,P≥300 kN,间排距=2 000 mm×1 200 mm;
    普通锚索:L=6 300 mm,P≥300 kN,间排距=1 000 mm×1 200 mm;
    NPR增强支护:左右各增设2根NPR锚索,L=10 300 mm,P≥300 kN,间排距= 2 000 mm×1 200 mm;
    金属网:D=8 mm,M=100 mm×100 mm;
    混凝土:H=270 mm
    下台阶 NPR锚索:L=10 300 mm,P≥300 kN,间排距=2 000 mm×1 200 mm;
    普通锚索:L=6 300 mm,P≥300 kN,间排距=1 000 mm×1 200 mm;
    金属网:D=8 mm,M=100 mm×100 mm;
    钢拱架:原钢拱架保留,间距为600 mm;
    混凝土:H=270 mm
    注:L为锚网索长度,mm;P为预紧力,kN;D为金属网钢筋直径,mm;M为金属网网格间排距,mm;H为混凝土初喷厚度,mm。
    下载: 导出CSV
  • [1] 李廷春. 毛羽山隧道高地应力软岩大变形施工控制技术[J]. 现代隧道技术, 2011, 48(2): 59-67. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201102012.htm

    Li Tingchun. Large deformation control technology for Maoyushan tunnel in soft rock under high in situ stresses[J]. Modern Tunnelling Technology, 2011, 48(2): 59-67. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201102012.htm
    [2] 丁远振, 谭忠盛, 马栋. 高地应力断层带软岩隧道变形特征与控制措施研究[J]. 土木工程学报, 2017, 50(S1): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S1023.htm

    Ding Yuanzhen, Tan Zhongsheng, Ma Dong. Study on large deformation characteristics and control measures of soft rock tunnel in fault zone with high geostress[J]. China Civil Engineering Journal, 2017, 50(S1): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S1023.htm
    [3] Wang F N, Guo Z B, Qiao X B, et al. Large deformation mechanism of thin-layered carbonaceous slate and energy coupling support technology of NPR anchor cable in Minxian Tunnel: a case study[J]. Tunnelling and Underground Space Technology, 2021, 117: 104151. doi: 10.1016/j.tust.2021.104151
    [4] 魏来, 刘钦, 黄沛. 高地应力软岩隧道大变形机理及控制对策研究综述[J]. 公路, 2017, 62(7): 297-306. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201707061.htm

    Wei Lai, Liu Qin, Huang Pei. Research progress on large deformation mechanism and control countermeasures of soft rock tunnel in high ground stress[J]. Highway, 2017, 62(7): 297-306. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201707061.htm
    [5] 何满潮. 软岩工程力学[M]. 北京: 科学出版社, 2002.
    [6] 袁青, 陈世豪, 肖靖, 等. 浅埋富水软岩隧道大变形机理与控制研究[J]. 防灾减灾工程学报, 2022, 42(4): 723-731. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202204008.htm

    Yuan Qing, Chen Shihao, Xiao Jing, et al. Research on large deformation mechanism and countermeasures of shallow buried tunnel in soft rock with abundant water[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(4): 723-731. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202204008.htm
    [7] 汪波, 李天斌, 何川, 等. 强震区软岩隧道大变形破坏特征及其成因机制分析[J]. 岩石力学与工程学报, 2012, 31(5): 928-936. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201205010.htm

    Wang Bo, Li Tianbin, He Chuan, et al. Analysis of failure properties and formatting mechanism of soft rock tunnel in meizoseismal areas[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(5): 928-936. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201205010.htm
    [8] Bian K, Liu J, Liu Z P, et al. Mechanisms of large deformation in soft rock tunnels: a case study of Huangjiazhai Tunnel[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(1): 431-444. doi: 10.1007/s10064-017-1155-8
    [9] 李磊, 谭忠盛. 挤压性破碎软岩隧道大变形特征及机制研究[J]. 岩石力学与工程学报, 2018, 37(S1): 3593-3603. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S1051.htm

    Li Lei, Tan Zhongsheng. Characteristic and mechanism research for large deformation problem in squeezing-shattered soft rock tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3593-3603. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S1051.htm
    [10] Brox D, Hagedorn H. Extreme deformation and damage during the construction of large tunnels[J]. Tunnelling and Underground Space Technology, 1999, 14(1): 23-28. doi: 10.1016/S0886-7798(99)00010-3
    [11] 杨会军, 王梦恕. 隧道围岩变形影响因素分析[J]. 铁道学报, 2006, 28(3): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200603022.htm

    Yang Huijun, Wang Mengshu. Analysis on construction factors of surrounding rock deformation in tunneling works[J]. Journal of the China Railway Society, 2006, 28(3): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200603022.htm
    [12] 陈明福. 高应力软岩单线铁路隧道大变形控制技术研究[J]. 公路, 2021, 66(11): 369-374. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202111067.htm

    Chen Mingfu. Study on large deformation control technology of single-track railway tunnel in high stress soft rock[J]. Highway, 2021, 66(11): 369-374. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202111067.htm
    [13] 孙洋, 陈建平, 余莉, 等. 浅埋偏压隧道软岩大变形机理及施工控制分析[J]. 现代隧道技术, 2013, 50(5): 169-174, 178. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201305030.htm

    Sun Yang, Chen Jianping, Yu Li, et al. Analysis of the large deformation mechanism of a shallow-buried unsymmetrical loading tunnel in soft rock and construction controls[J]. Modern Tunnelling Technology, 2013, 50(5): 169-174, 178. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201305030.htm
    [14] 刘宇鹏, 夏才初, 吴福宝, 等. 高地应力软岩隧道长、短锚杆联合支护技术研究[J]. 岩石力学与工程学报, 2020, 39(1): 105-114. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202001011.htm

    Liu Yupeng, Xia Caichu, Wu Fubao, et al. A combined support technology of long and short bolts of soft rock tunnels under high ground stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(1): 105-114. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202001011.htm
    [15] 韩常领, 张天, 徐晨, 等. 大断面软岩隧道变形特征及多层初支控制研究[J]. 公路, 2021, 66(1): 335-339. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202101066.htm

    Han Changling, Zhang Tian, Xu Chen, et al. Research on the deformation characteristics of soft rock tunnel with large section and the deformation control with multi-layer support[J]. Highway, 2021, 66(1): 335-339. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202101066.htm
    [16] Ma Dong, Sun Yi, Wang Wuxian, et al. Key technologies for controlling large deformation of soft rock tunnels with high geostress[J]. Tunnel Construction, 2021, 41(10): 1634-1643.
    [17] Cantieni L, Anagnostou G. The interaction between yielding supports and squeezing ground[J]. Tunnelling and Underground Space Technology, 2009, 24(3): 309-322. doi: 10.1016/j.tust.2008.10.001
    [18] 汪波, 王杰, 吴德兴, 等. 让压支护技术在软岩大变形隧道中的应用探讨[J]. 公路交通科技, 2015, 32(5): 115-122. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201505019.htm

    Wang Bo, Wang Jie, Wu Dexing, et al. Discussion on application of yielding supporting technology in large-deformation tunnel in soft rock[J]. Journal of Highway and Transportation Research and Development, 2015, 32(5): 115-122. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201505019.htm
    [19] 曹小平, 魏飞鹏, 王波, 等. 高地应力软岩隧道合理支护方案试验研究[J]. 铁道工程学报, 2018, 35(7): 65-71, 102. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201807012.htm

    Cao Xiaoping, Wei Feipeng, Wang Bo, et al. Experimental research on the reasonable support scheme of soft rock tunnel with high ground stress[J]. Journal of Railway Engineering Society, 2018, 35(7): 65-71, 102. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201807012.htm
    [20] 雷升祥, 赵伟. 软岩隧道大变形环向让压支护机制研究[J]. 岩土力学, 2020, 41(3): 1039-1047. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003035.htm

    Lei Shengxiang, Zhao Wei. Study on mechanism of circumferential yielding support for soft rock tunnel with large deformation[J]. Rock and Soil Mechanics, 2020, 41(3): 1039-1047. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003035.htm
    [21] 何满潮, 郭志飚. 恒阻大变形锚杆力学特性及其工程应用[J]. 岩石力学与工程学报, 2014, 33(7): 1297-1308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201407001.htm

    He Manchao, Guo Zhibiao. Mechanical property and engineering application of anchor bolt with constant resistance and large deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(7): 1297-1308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201407001.htm
    [22] 何满潮, 王炯, 孙晓明, 等. 负泊松比效应锚索的力学特性及其在冲击地压防治中的应用研究[J]. 煤炭学报, 2014, 39(2): 214-221. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201402002.htm

    He Manchao, Wang Jiong, Sun Xiaoming, et al. Mechanics characteristics and applications of prevention and control rock bursts of the negative Poisson's ratio effect anchor[J]. Journal of China Coal Society, 2014, 39(2): 214-221. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201402002.htm
    [23] 孙晓明, 张勇, 何满潮, 等. 深部井巷工程高预应力NPR耦合支护技术[J]. 矿业科学学报, 2023, 8(1): 50-65. doi: 10.19606/j.cnki.jmst.2023.01.005

    Sun Xiaoming, Zhang Yong, He Manchao, et al. Research of high pre-stress NPR support technology in deep shaft roadway engineering[J]. Journal of Mining Science and Technology, 2023, 8(1): 50-65. doi: 10.19606/j.cnki.jmst.2023.01.005
    [24] 王炯, 刘鹏, 刘帅, 等. 煤矿动压巷道围岩稳定性协同卸压控制技术研究[J]. 矿业科学学报, 2021, 6(3): 323-332. doi: 10.19606/j.cnki.jmst.2021.03.009

    Wang Jiong, Liu Peng, Liu Shuai, et al. Study on collaborative pressure relief control technology for surrounding rock stability of dynamic pressure roadway in coal mine[J]. Journal of Mining Science and Technology, 2021, 6(3): 323-332. doi: 10.19606/j.cnki.jmst.2021.03.009
    [25] 徐则民, 黄润秋, 王士天. 隧道的埋深划分[J]. 中国地质灾害与防治学报, 2000, 11(4): 5-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200004001.htm

    Xu Zemin, Huang Runqiu, Wang Shitian. Tunnel classifying in light of depth(i. e thickness of overburden)[J]. The Chinese Journal of Geological Hazard and Control, 2000, 11(4): 5-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200004001.htm
    [26] John A. Hudson Engineering rock mechanics[M]. Stanford: Redwood Books Press, 1997.
    [27] 张顶立, 陈立平. 隧道围岩的复合结构特性及其荷载效应[J]. 岩石力学与工程学报, 2016, 35(3): 456-469. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603003.htm

    Zhang Dingli, Chen Liping. Compound structural characteristics and load effect of tunnel surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3): 456-469. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603003.htm
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  213
  • HTML全文浏览量:  76
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-26
  • 修回日期:  2023-01-14
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回