留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿开采损伤数值模拟量化表征与应用

张村 任赵鹏 兰世勇 方尚鑫 芦佳乐 乔元栋

张村, 任赵鹏, 兰世勇, 方尚鑫, 芦佳乐, 乔元栋. 煤矿开采损伤数值模拟量化表征与应用[J]. 矿业科学学报, 2023, 8(3): 398-408. doi: 10.19606/j.cnki.jmst.2023.03.013
引用本文: 张村, 任赵鹏, 兰世勇, 方尚鑫, 芦佳乐, 乔元栋. 煤矿开采损伤数值模拟量化表征与应用[J]. 矿业科学学报, 2023, 8(3): 398-408. doi: 10.19606/j.cnki.jmst.2023.03.013
Zhang Cun, Ren Zhaopeng, Lan Shiyong, Fang Shangxin, Lu Jiale, Qiao Yuandong. Quantitative characterization of coal mining damage and its application in numerical simulation[J]. Journal of Mining Science and Technology, 2023, 8(3): 398-408. doi: 10.19606/j.cnki.jmst.2023.03.013
Citation: Zhang Cun, Ren Zhaopeng, Lan Shiyong, Fang Shangxin, Lu Jiale, Qiao Yuandong. Quantitative characterization of coal mining damage and its application in numerical simulation[J]. Journal of Mining Science and Technology, 2023, 8(3): 398-408. doi: 10.19606/j.cnki.jmst.2023.03.013

煤矿开采损伤数值模拟量化表征与应用

doi: 10.19606/j.cnki.jmst.2023.03.013
基金项目: 

国家自然科学基金 52104155

国家自然科学基金 51904302

北京市自然科学基金 8212032

煤炭开采水资源保护与利用国家重点实验室开放基金 WPUKFJJ2019-5

详细信息
    作者简介:

    张村(1990—),男,江苏海门人,博士,副教授,博士生导师,主要从事煤矿开采与矿井水资源利用的教学与科研工作。Tel:15810194127,E-mail:cumt-zc@cumtb.edu.cn

  • 中图分类号: TD324

Quantitative characterization of coal mining damage and its application in numerical simulation

  • 摘要: 地表岩土层沉陷和生态损伤是采动损伤的主要表现形式,量化表征采动损伤是分析围岩稳定性、设计开采工艺参数和巷道支护参数的前提。本文根据现阶段常用的有限元和离散元模拟方法,提出并定义了损伤度概念,作为表征开采损伤的量化指标,即单元体塑性体积占比和接触断裂长度(个数)占比;利用损伤度量化指标优化了西部矿区高强度开采参数,分析了采动水浸条件下区段煤柱的稳定性和充水断裂构造区域巷道围岩的渐进损伤特征,获得了覆岩损伤度与工作面长度和推进速度的量化关系,可以实现开采参数的合理优化;揭示了区段煤柱采动水浸的渐进损伤特征,认为现有煤柱条件下采空区作为蓄水区域存在渗水危险;量化了充水断裂构造区域巷道围岩损伤分布特征,提出了疏放断层贯通顶板含水层+原有断层裂隙注浆加固+加强支护的解决措施。与导水裂隙带高度、煤柱塑性区发育宽度等常用损伤指标进行对比,损伤度量化指标对于采动损伤表征的敏感度更高,能够实现连续性采动损伤表征。
  • 图  1  覆岩损伤度计算模型示意图

    Figure  1.  The calculation model of overlying rock damage degree

    图  2  UDEC模拟煤岩体破裂的传播

    Figure  2.  UDEC simulation of propagation of coal-rock fracture

    图  3  损伤度监测单元划分

    Figure  3.  Division of damage monitoring units

    图  4  导水裂隙带高度与损伤度随工作面长度变化规律

    Figure  4.  The changing relationship between the height of water-conducting fracture zone and length of damage degree with longwall face

    图  5  导水裂隙带高度和损伤度随推进速度变化规律

    Figure  5.  The changing relationship between height of water-conducting fracture zone and damage degree with advancing speed

    图  6  长壁开采工作面数值模型及测点分布

    Figure  6.  Numerical model and measuring point distribution of longwall mining face

    图  7  煤柱损伤度和塑性区发育宽度演化曲线

    Figure  7.  Evolution curve of damage degree of coal pillar and development width of plastic zone

    图  8  不同水位工作面推进过程中煤柱损伤度演化曲线

    Figure  8.  Evolution curve of coal pillar damage degree during advancing of working face with different water levels

    图  9  数值模型与巷道支护方式

    Figure  9.  Numerical models and roadway supporting method

    图  10  在不同含水率条件下煤岩体的弱化情况

    Figure  10.  The weakening of coal and rock mass under different water content conditions

    图  11  不同计算时间下围岩不同区域损伤度演化情况

    Figure  11.  Evolution of damage degree of surrounding rock in different regions under different calculation times

    图  12  研究区域内巷道围岩损伤最终分布

    Figure  12.  The final distribution of roadway surrounding rock damage in the study area

    图  13  不同措施下的巷道围岩损伤度分布及演化情况

    Figure  13.  Damage distribution and evolution of roadway surrounding rock under different measures

  • [1] 李全生, 郭俊廷, 张凯, 等. 西部煤炭集约化开采损伤传导机理与源头减损关键技术[J]. 煤炭学报, 2021, 46(11): 3636-3644. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202111020.htm

    Li Quansheng, Guo Junting, Zhang Kai, et al. Damage conduction mechanism and key technologies of damage reduction in sources for intensive coal mining in Western China[J]. Journal of China Coal Society, 2021, 46(11): 3636-3644. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202111020.htm
    [2] 潘东江, 张农, 赵一鸣, 等. 西部矿区植被根系采动损伤特征及细观力学机制[J]. 煤炭学报, 2017, 42(2): 373-380. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201702015.htm

    Pan Dongjiang, Zhang Nong, Zhao Yiming, et al. Characteristics and mesoscopic mechanics of vegetation roots damage induced by mining in western mining area[J]. Journal of China Coal Society, 2017, 42(2): 373-380. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201702015.htm
    [3] 王新静, 胡振琪, 胡青峰, 等. 风沙区超大工作面开采土地损伤的演变与自修复特征[J]. 煤炭学报, 2015, 40(9): 2166-2172. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201509030.htm

    Wang Xinjing, Hu Zhenqi, Hu Qingfeng, et al. Evolution and self-healing characteristic of land ecological environment due to super-large coalface mining in windy and sandy region[J]. Journal of China Coal Society, 2015, 40(9): 2166-2172. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201509030.htm
    [4] 李全生, 张村. 基于采动空间守恒的西部矿区高强度开采损伤传导模型及应用[J]. 采矿与安全工程学报, 2021, 38(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202101001.htm

    Li Quansheng, Zhang Cun. Damage conduction model of high intensity mining in western mining area based on conservation of mining space and its application[J]. Journal of Mining & Safety Engineering, 2021, 38(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202101001.htm
    [5] 高保彬, 刘云鹏, 潘家宇, 等. 水体下采煤中导水裂隙带高度的探测与分析[J]. 岩石力学与工程学报, 2014, 33(S1): 3384-3390. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1111.htm

    Gao Baobing, Liu Yunpeng, Pan Jiayu, et al. Detection and analysis of height of water flowing fractured zone in underwater mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 3384-3390. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1111.htm
    [6] 袁峰, 申涛, 谢晓深, 等. 基于深度学习的地震多属性融合技术在导水裂隙带探测中的应用[J]. 煤炭学报, 2021, 46(10): 3234-3244. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202110015.htm

    Yuan Feng, Shen Tao, Xie Xiaoshen, et al. Application of deep learning-based seismic multi-attribute fusion technology in the detection of water conducting fissure zone[J]. Journal of China Coal Society, 2021, 46(10): 3234-3244. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202110015.htm
    [7] 许延春, 谢小锋, 刘世奇, 等. 注浆加固工作面底板岩体力学性质"增强-损伤"的定量测定[J]. 采矿与安全工程学报, 2017, 34(6): 1186-1193. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201706024.htm

    Xu Yanchun, Xie Xiaofeng, Liu Shiqi, et al. Quantitative determination of mechanical property of "enhance-damage" for floor rock mass in grouting reinforcement working face[J]. Journal of Mining & Safety Engineering, 2017, 34(6): 1186-1193. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201706024.htm
    [8] 李铁, 王维, 谢俊文, 等. 基于采动顶、底板岩层损伤的冲击地压预测[J]. 岩石力学与工程学报, 2012, 31(12): 2438-2444. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201212008.htm

    Li Tie, Wang Wei, Xie Junwen, et al. Rockbursts prediction based on rock damage of roof and floor induced by mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2438-2444. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201212008.htm
    [9] 赵毅鑫, 许多, 张康宁, 等. 采动地表浅层隐蔽裂缝的无人机红外识别现场试验[J]. 煤炭学报, 2022, 47(5): 1921-1932. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202205014.htm

    Zhao Yixin, Xu Duo, Zhang Kang ning, et al. In-situ experiment on the identification of shallow hidden mining-induced ground fissure using UAV infrared technology[J]. Journal of China Coal Society, 2022, 47(5): 1921-1932. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202205014.htm
    [10] 陈炳乾, 邓喀中, 范洪冬. 基于D-InSAR技术和SVR算法的开采沉陷监测与预计[J]. 中国矿业大学学报, 2014, 43(5): 880-886. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201405017.htm

    Chen Bingqian, Deng Kazhong, Fan Hongdong. Combining D-InSARand SVR for monitoring and prediction of mining subsidence[J]. Journal of China University of Mining & Technology, 2014, 43(5): 880-886. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201405017.htm
    [11] 张凯, 李全生, 戴华阳, 等. 矿区地表移动"空天地"一体化监测技术研究[J]. 煤炭科学技术, 2020, 48(2): 207-213. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202002027.htm

    Zhang Kai, Li Quansheng, Dai Huayang, et al. Research on integrated monitoring technology and practice of "space-sky-ground" on surface movement in mining area[J]. Coal Science and Technology, 2020, 48(2): 207-213. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202002027.htm
    [12] 郭文兵, 白二虎, 陈俊杰. 三维激光扫描监测开采沉陷的精度分析[J]. 煤炭科学技术, 2014, 42(11): 85-89. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201411023.htm

    Guo Wenbing, Bai Erhu, Chen Junjie. Precision Analysis of 3D Laser Scanning to Monitor Mining Subsidence[J]. Coal Science and Technology, 2014, 42(11): 85-89. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201411023.htm
    [13] 钱鸣高, 缪协兴, 许家林. 岩层控制中的关键层理论研究[J]. 煤炭学报, 1996, 21(3): 2-7. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB603.000.htm

    Qian Minggao, Miao Xiexing, Xu Jialin, Theoretical study of key stratum in ground control[J]. Journal of China Coal Society, 1996, 21(3): 2-7. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB603.000.htm
    [14] 汪锋, 陈绍杰, 任梦梓, 等. 松散层拱结构及其对采动覆岩稳定性的影响[J]. 中国矿业大学学报, 2019, 48(5): 975-983. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201905005.htm

    Wang Feng, Chen Shaojie, Ren Mengzi, et al. Effect of arch structure in unconsolidated layers on failure of the overlying strata[J]. Journal of China University of Mining & Technology, 2019, 48(5): 975-983. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201905005.htm
    [15] 娄金福. 采场覆岩破断与应力演化的梁拱二元结构及岩层特性影响机制[J]. 采矿与安全工程学报, 2021, 38(4): 678-686. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202104004.htm

    Lou Jinfu. Influence mechanism of beam-arch binary structure and strata characteristics on fracture and stress evolution of overlying strata in stope[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 38(4): 678-686. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202104004.htm
    [16] 屠洪盛, 屠世浩, 陈芳, 等. 基于薄板理论的急倾斜工作面顶板初次变形破断特征研究[J]. 采矿与安全工程学报, 2014, 31(1): 49-54, 59. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201401008.htm

    Tu Hongsheng, Tu Shihao, Chen fang, et al. Study on the deformation and fracture feature of steep inclined coal seam roof based on the theory of thin plates[J]. Journal of Mining & Safety Engineering, 2014, 31(1): 49-54, 59. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201401008.htm
    [17] 杨胜利, 王家臣, 李良晖. 基于中厚板理论的关键岩层变形及破断特征研究[J]. 煤炭学报, 2020, 45(8): 2718-2727. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202008003.htm

    Yang Shengli, Wang Jiachen, Li Lianghui. Deformation and fracture characteristics of key strata based on the medium thick plate theory[J]. Journal of China Coal Society, 2020, 45(8): 2718-2727. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202008003.htm
    [18] 吴群英, 郭重威, 翟鸿良, 等. 重复采动覆岩裂隙率空间分布相似模拟研究——以陕北矿区为例[J]. 煤炭科学技术, 2022, 50(1): 105-111. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202201009.htm

    Wu Qunying, Guo Zhongwei, Zhai Hongliang, et al. Physical simulation on spatial distribution of void fraction in overburden due to repeated mining in North Shaanxi Mining Area[J]. Coal Science and Technology, 2022, 50(1): 105-111. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202201009.htm
    [19] 曹志国, 张建民, 王皓, 等. 西部矿区煤水协调开采物理与情景模拟实验研究[J]. 煤炭学报, 2021, 46(2): 638-651. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202102027.htm

    Cao Zhiguo, Zhang Jianmin, Wang Hao, et al. Physical modelling and scenario simulation of coal& water co-mining in coal mining areas in western China[J]. Journal of China Coal Society, 2021, 46(2): 638-651. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202102027.htm
    [20] 杨科, 刘文杰, 焦彪, 等. 深部厚硬顶板综放开采覆岩运移三维物理模拟试验研究[J]. 岩土工程学报, 2021, 43(1): 85-93. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202101015.htm

    Yang Ke, Liu Wenjie, Jiao Biao, et al. Three-dimensional physical simulation of overburden migration in deep thick hard roof fully-mechanized caving mining[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 85-93. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202101015.htm
    [21] 张村, 任赵鹏, 韩鹏华, 等. 西部矿区厚基岩特大采高工作面导水裂隙带发育特征[J]. 矿业科学学报, 2022, 7(3): 333-343. doi: 10.19606/j.cnki.jmst.2022.03.008

    Zhang Cun, Ren Zhaopeng, Han Penghua, et al. Characteristic of the water-conducting fracture zone development in thick overburden working face with extra-large mining height in western mining area[J]. Journal of Mining Science and Technology, 2022, 7(3): 333-343. doi: 10.19606/j.cnki.jmst.2022.03.008
    [22] 赵毅鑫, 刘文超, 张村, 等. 近距离煤层蹬空开采围岩应力及裂隙演化规律[J]. 煤炭学报, 2022, 47(1): 259-273. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202201018.htm

    Zhao Yixin, Liu Wenchao, Zhang Cun, et al. Stress and fracture evolution of surrounding rock during mining above mined out area in contiguous coal seams[J]. Journal of China Coal Society, 2022, 47(1): 259-273. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202201018.htm
    [23] 张村, 屠世浩, 赵毅鑫, 等. 基于渗流实验的三轴流固耦合离散元数值模拟研究[J]. 矿业科学学报, 2019, 4(1): 23-33. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201901004.htm

    Zhang Cun, Tu Shihao, Zhao Yixin, et al. Discrete element numerical simulation of triaxial fluid solid coupling based on seepage experiment[J]. Journal of Mining Science and Technology, 2019, 4(1): 23-33. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201901004.htm
    [24] 张村, 屠世浩, 白庆升, 等. 陷落柱周边应力变化及推采控制研究[J]. 中国矿业大学学报, 2014, 43(6): 974-980. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201406004.htm

    Zhang Cun, Tu Shihao, Bai Qingsheng, et al. Stress changes around collapse column and the control technology by directly passing operation in longwall working face[J]. Journal of China University of Mining & Technology, 2014, 43(6): 974-980. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201406004.htm
    [25] 何祥, 张村, 赵毅鑫, 等. 基于覆岩损伤本构模型的高强度开采参数确定及减损效果评价[J]. 采矿与安全工程学报, 2021, 38(3): 439-448. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202103002.htm

    He Xiang, Zhang Cun, Zhao Yixin, et al. Parameters determination of high-intensity mining and reduction effect evaluation based on damage constitutive model of overburden rock[J]. Journal of Mining & Safety Engineering, 2021, 38(3): 439-448. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202103002.htm
    [26] 王晓振, 许家林, 韩红凯, 等. 顶板导水裂隙高度随采厚的台阶式发育特征[J]. 煤炭学报, 2019, 44(12): 3740-3749. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201912015.htm

    Wang Xiaozhen, Xu Jialin, Han Hongkai, et al. Stepped development characteristic of water flowing fracture height with variation of mining thickness[J]. Journal of China Coal Society, 2019, 44(12): 3740-3749. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201912015.htm
    [27] 张村, 韩鹏华, 王方田, 等. 采动水浸作用下矿井地下水库残留煤柱稳定性[J]. 中国矿业大学学报, 2021, 50(2): 220-227, 247. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202102003.htm

    Zhang Cun, Han Penghua, Wang Fangtian, et al. The stability of residual coal pillar in underground reservoir with the effect of mining and water immersion[J]. Journal of China University of Mining & Technology, 2021, 50(2): 220-227, 247. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202102003.htm
    [28] Bai Q S, Tu S H. Numerical observations of the failure of a laminated and jointed roof and the effective of different support schemes: a case study[J]. Environmental Earth Sciences, 2020, 79(10): 1-18.
    [29] Wang F T, Liang N N, Li G. Damage and Failure Evolution Mechanism for Coal Pillar Dams Affected by Water Immersion in Underground Reservoirs[J]. Geofluids, 2019: 2985691.
  • 加载中
图(13)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  31
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-05
  • 修回日期:  2022-10-03
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回