留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

尾矿絮体结构的分形特征及其沉降速度研究

刘晓辉 阮竹恩 朱权洁 张立强

刘晓辉, 阮竹恩, 朱权洁, 张立强. 尾矿絮体结构的分形特征及其沉降速度研究[J]. 矿业科学学报, 2023, 8(3): 390-397. doi: 10.19606/j.cnki.jmst.2023.03.012
引用本文: 刘晓辉, 阮竹恩, 朱权洁, 张立强. 尾矿絮体结构的分形特征及其沉降速度研究[J]. 矿业科学学报, 2023, 8(3): 390-397. doi: 10.19606/j.cnki.jmst.2023.03.012
Liu Xiaohui, Ruan Zhuen, Zhu Quanjie, Zhang Liqiang. Study on fractal feature and settling velocity of tailings floc[J]. Journal of Mining Science and Technology, 2023, 8(3): 390-397. doi: 10.19606/j.cnki.jmst.2023.03.012
Citation: Liu Xiaohui, Ruan Zhuen, Zhu Quanjie, Zhang Liqiang. Study on fractal feature and settling velocity of tailings floc[J]. Journal of Mining Science and Technology, 2023, 8(3): 390-397. doi: 10.19606/j.cnki.jmst.2023.03.012

尾矿絮体结构的分形特征及其沉降速度研究

doi: 10.19606/j.cnki.jmst.2023.03.012
基金项目: 

国家自然科学基金 52074121

河北省自然科学基金 E2019508145

详细信息
    作者简介:

    刘晓辉(1984—),男,四川德阳人,博士,高级工程师,主要从事金属矿山充填开采技术、尾矿处置等方面的研究工作。Tel:010-61591229,E-mail:liuxiaohui28@ncist.edu.cn

  • 中图分类号: TD853

Study on fractal feature and settling velocity of tailings floc

  • 摘要: 絮凝沉降广泛存在于尾矿处置的各个工艺环节,实现尾矿絮凝沉降速度的精确测算对于指导尾矿充填及地表堆存等工程问题具有重要的现实意义。本文借助分形理论研究了尾矿絮凝体的结构特征,建立了絮凝体几何尺寸与颗粒粒径、分形维数之间的数学关系,综合分析了浮力效应、回流效应以及黏滞效应对絮凝体沉降的影响作用,最终构建了沉降速度的测算模型。开展尾矿絮凝沉降试验,同时利用聚焦光束反射测量(FBRM)技术对絮凝体几何形态的变化进行观测,并根据实测数据对沉降速度测算模型进行了验证分析。结果显示:絮凝体沉降速度随其等效粒径增大而增大,可划分为加速沉降、匀速沉降、压密沉降3个阶段;试验尾矿絮凝体的粒径为140~350 μm,当分形维数取2.25时,沉降速度为1.3~2.0 mm/s,模型计算值与实测值存在较好的相关性,具有一定的实际应用价值。
  • 图  1  尾矿颗粒组成及分类

    ψ—固体颗粒占比;φ—体积分数;n—孔隙率;上标cl、si、sa、m分别代表黏粒、粉粒、砂粒和细颗粒;下标s表示固相;ψsaψsiψcl之和为1;φssaφssiφscln的和为1

    Figure  1.  Particle composition and classification of tailings sample

    图  2  絮凝体生长发育的自相似性

    Figure  2.  Schematization of aggregation by self-similarity

    图  3  试验方法及步骤

    Figure  3.  Test method and procedure

    图  4  絮体平均加权弦长与搅拌时间变化曲线

    Figure  4.  Variation of the SWMCL of floc with mixing time

    图  5  部分试验沉降速度与时间变化曲线

    Figure  5.  Variation of setting velocity with time

    图  6  絮体沉降速度与等效粒径的变化曲线

    Figure  6.  Variation of the settling velocity with the equivalent diameter of floc

    图  7  干涉沉降系数与絮体等效粒径的变化

    Figure  7.  Variation of the hindered settling coefficient with the equivalent diameter of floc

    图  8  粗颗粒沉降速度与絮体特征粒径的变化

    Figure  8.  Variation of the the settling velocity of sand with the equivalent diameter of floc

    表  1  模型参数取值

    Table  1.   Model parameter value

    序号 物理量 单位 取值
    1 cm kg/m3 145.6
    2 csa kg/m3 17.0
    3 φsm % 5.23%
    4 φssa % 0.61%
    5 d50m μm 30.67
    6 d50sa μm 115
    7 μw Pa·s 1.01×10-3
    8 φf % φf=f(dfDF)
    下载: 导出CSV
  • [1] 吴爱祥, 杨莹, 程海勇, 等. 中国膏体技术发展现状与趋势[J]. 工程科学学报, 2018, 40(5): 517-525. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201805001.htm

    Wu Aixiang, Yang Ying, Cheng Haiyong, et al. Status and prospects of paste technology in China[J]. Chinese Journal of Engineering, 2018, 40(5): 517-525. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201805001.htm
    [2] 阮竹恩, 吴爱祥, 焦华喆, 等. 我国全尾砂料浆浓密研究进展与发展趋势[J]. 中国有色金属学报, 2022, 32(1): 286-301. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202201026.htm

    Ruan Zhuen, Wu Aixiang, Jiao Huazhe, et al. Advances and trends on thickening of full-tailings slurry in China[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(1): 286-301. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202201026.htm
    [3] 吴爱祥, 周靓, 尹升华, 等. 全尾砂絮凝沉降的影响因素[J]. 中国有色金属学报, 2016, 26(2): 439-446. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201602023.htm

    Wu Aixiang, Zhou Jing, Yin Shenghua, et al. Influence factors on flocculation sedimentation of unclassified tailings[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(2): 439-446. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201602023.htm
    [4] 焦华喆, 吴爱祥, 王洪江, 等. 全尾砂絮凝沉降特性实验研究[J]. 北京科技大学学报, 2011, 33(12): 1437-1441. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201112001.htm

    Jiao Huazhe, Wu Aixiang, Wang Hongjiang, et al. Experiment study on the flocculation settlement characteristic of unclassified tailings[J]. Journal of University of Science and Technology Beijing, 2011, 33(12): 1437-1441. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201112001.htm
    [5] 焦华喆, 王洪江, 吴爱祥, 等. 全尾砂絮凝沉降规律及其机理[J]. 北京科技大学学报, 2010, 32(6): 702-707. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201006002.htm

    Jiao Huazhe, Wang Hongjiang, Wu Aixiang, et al. Rule and mechanism of flocculation sedimentation of unclassified tailings[J]. Journal of University of Science and Technology Beijing, 2010, 32(6): 702-707. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201006002.htm
    [6] 任伟成, 乔登攀. 大红山铜矿尾砂沉降数据的回归方程研究[J]. 矿产保护与利用, 2014(5): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201405017.htm

    Ren Weicheng, Qiao Dengpan. Study on settlement data regression equation of Dahongshan copper tailings[J]. Conservation and Utilization of Mineral Resources, 2014(5): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201405017.htm
    [7] 李警阳, 张忠国, 孙春宝, 等. 基于分形学的絮凝理论研究进展[J]. 化工进展, 2012, 31(12): 2609-2614, 2625. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201212002.htm

    Li Jingyang, Zhang Zhongguo, Sun Chunbao, et al. A review of flocculation theories incorporating fractal geometry[J]. Chemical Industry and Engineering Progress, 2012, 31(12): 2609-2614, 2625. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201212002.htm
    [8] 郭超, 何青. 黏性泥沙絮凝研究综述与展望[J]. 泥沙研究, 2021, 46(2): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-NSYJ202102012.htm

    Guo Chao, He Qing. Review of the research on cohesive sediment flocculation[J]. Journal of Sediment Research, 2021, 46(2): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-NSYJ202102012.htm
    [9] 张乃予, 周晶晶, 王捷. 泥沙絮团结构的试验研究综述[J]. 泥沙研究, 2016(1): 76-80. https://www.cnki.com.cn/Article/CJFDTOTAL-NSYJ201601014.htm

    Zhang Naiyu, Zhou Jingjing, Wang Jie. A review of experimental study on floc structure of cohesive sediment[J]. Journal of Sediment Research, 2016(1): 76-80. https://www.cnki.com.cn/Article/CJFDTOTAL-NSYJ201601014.htm
    [10] Wu A X, Ruan Z E, Bürger R, et al. Optimization of flocculation and settling parameters of tailings slurry by response surface methodology[J]. Minerals Engineering, 2020, 156: 106488.
    [11] 周旭, 阮竹恩, 吴爱祥, 等. 基于FBRM和PVM技术的尾矿浓密过程絮团演化规律[J]. 工程科学学报, 2021, 43(11): 1425-1432. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202111001.htm

    Zhou Xu, Ruan Zhuen, Wu Aixiang, et al. Aggregate evolution rule during tailings thickening based on FBRM and PVM[J]. Chinese Journal of Engineering, 2021, 43(11): 1425-1432. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202111001.htm
    [12] 阮竹恩, 吴爱祥, 王建栋, 等. 基于絮团弦长测定的全尾砂絮凝沉降行为[J]. 工程科学学报, 2020, 42(8): 980-987. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202008005.htm

    Ruan Zhuen, Wu Aixiang, Wang Jiandong, et al. Flocculation and settling behavior of unclassified tailings based on measurement of floc chord length[J]. Chinese Journal of Engineering, 2020, 42(8): 980-987. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202008005.htm
    [13] 李翠平, 陈格仲, 阮竹恩, 等. 尾砂浓密全过程的絮团结构动态演化规律[J/OL]. 中国有色金属学. http://kns.cnki.net/kcms/detail/43.1238.TG.20220311.2000.002.html.
    [14] 侯贺子, 李翠平, 王少勇, 等. 尾矿浓密中泥层沉降速度变化及颗粒沉降特性[J]. 中南大学学报: 自然科学版, 2019, 50(6): 1428-1436. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201906022.htm

    Hou Hezi, Li Cuiping, Wang Shaoyong, et al. Settling velocity variation of mud layer and particle settling characteristics in thickening of tailings[J]. Journal of Central South University: Science and Technology, 2019, 50(6): 1428-1436. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201906022.htm
    [15] 陈格仲, 李翠平, 阮竹恩, 等. 膏体充填中絮凝条件对絮团结构及固液分离效率的影响[J]. 中国有色金属学报, 2022, 32(10): 3169-3182. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202210024.htm

    Chen Gezhong, Li Cuiping, Ruan Zhuen, et al. Influence of flocculation conditions on floc structure and solid-liquid separation in cemented paste filling[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(10): 3169-3182. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202210024.htm
    [16] Leiva W H, Fawell P D, Goñi C, et al. Temporal evolution of the structure of tailings aggregates flocculated in seawater[J]. Minerals Engineering, 2021, 160: 106708.
    [17] Nieto S, Toro N, Robles P, et al. Flocculation of clay-based tailings: differences of Kaolin and sodium montmorillonite in salt medium[J]. Materials, 2022, 15(3): 1156.
    [18] Talmon A M, van Kesteren W G M, Sittoni L, et al. Shear cell tests for quantification of tailings segregation[J]. The Canadian Journal of Chemical Engineering, 2014, 92(2): 362-373.
    [19] Ruan Z E, Wu A X, Bürger R, et al. A population balance model for shear-induced polymer-bridging flocculation of total tailings[J]. Minerals, 2021, 12(1): 30-40.
    [20] Winterwerp J C. On the flocculation and settling velocity of estuarine mud[J]. Continental Shelf Research, 2002, 22(9): 1339-1360.
    [21] 杨铁笙, 熊祥忠, 詹秀玲, 等. 粘性细颗粒泥沙絮凝研究概述[J]. 水利水运工程学报, 2003(2): 65-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY200302013.htm

    Yang Tiesheng, Xiong Xiangzhong, Zhan Xiuling, et al. On flocculaton of cohesive fine sediment[J]. Hydro-Science and Engineering, 2003(2): 65-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY200302013.htm
    [22] Winterwerp J, Kesteren W V. Introduction to the physics of cohesive sediment dynamics in the marine environment[M]. Amsterdam: Elsevier, 2004: 93-95.
    [23] Hanssen J. Towards improving predictions of non-Newtonian settling slurries with Delft 3D: theoretical development and validation in 1DV[D]. Delft: Delft University of Technology, 2016.
    [24] Kranenburg C. The fractal structure of cohesive sediment aggregates[J]. Estuarine, Coastal and Shelf Science, 1994, 39(6): 451-460.
    [25] Feder J. Fractals[M]. New York: Plenum Press, 1988: 163-167.
    [26] Khelifa A, Hill P S. Models for effective density and settling velocity of flocs[J]. Journal of Hydraulic Research, 2006, 44(3): 390-401.
    [27] Winterwerp J C. A simple model for turbulence induced flocculation of cohesive sediment[J]. Journal of Hydraulic Research, 1998, 36(3): 309-326.
    [28] 阮竹恩. 给料井内全尾砂絮凝行为及其优化应用研究[D]. 北京: 北京科技大学, 2021.
    [29] Wu A X, Ruan Z E, Bürger R, et al. Optimization of flocculation and settling parameters of tailings slurry by response surface methodology[J]. Minerals Engineering, 2020, 156: 106488.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  41
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-13
  • 修回日期:  2022-10-28
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回