留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

隧道爆破振动信号时频谱增强优化分析

付晓强 麻岩 俞缙 戴良玉 黄凌君

付晓强, 麻岩, 俞缙, 戴良玉, 黄凌君. 隧道爆破振动信号时频谱增强优化分析[J]. 矿业科学学报, 2023, 8(3): 348-356. doi: 10.19606/j.cnki.jmst.2023.03.008
引用本文: 付晓强, 麻岩, 俞缙, 戴良玉, 黄凌君. 隧道爆破振动信号时频谱增强优化分析[J]. 矿业科学学报, 2023, 8(3): 348-356. doi: 10.19606/j.cnki.jmst.2023.03.008
Fu Xiaoqiang, Ma Yan, Yu Jin, Dai Liangyu, Huang Lingjun. Optimization analysis of time frequency spectrum enhancement of tunnel blasting vibration signal[J]. Journal of Mining Science and Technology, 2023, 8(3): 348-356. doi: 10.19606/j.cnki.jmst.2023.03.008
Citation: Fu Xiaoqiang, Ma Yan, Yu Jin, Dai Liangyu, Huang Lingjun. Optimization analysis of time frequency spectrum enhancement of tunnel blasting vibration signal[J]. Journal of Mining Science and Technology, 2023, 8(3): 348-356. doi: 10.19606/j.cnki.jmst.2023.03.008

隧道爆破振动信号时频谱增强优化分析

doi: 10.19606/j.cnki.jmst.2023.03.008
基金项目: 

福建省自然科学基金 2020J01390

三明学院国家基金培育计划 PYT2008

国家自然科学基金 51874144

国家自然科学基金 51679093

详细信息
    作者简介:

    付晓强(1984—),男,山西运城人,博士,副教授,硕士生导师,主要从事工程爆破与岩石破碎、岩石动力学等方面的研究工作。Tel: 17350336891,E-mail: fuxiaoqiang1984@163.com

    通讯作者:

    俞缙(1978—),男,江苏苏州人,博士,教授,博士生导师,主要从事岩土力学与防灾减灾方面的研究工作。Tel: 18060915076,E-mail: bugyu0717@163.com

  • 中图分类号: TD235.1

Optimization analysis of time frequency spectrum enhancement of tunnel blasting vibration signal

  • 摘要: 针对隧道爆破振动信号时频解析度不足的难题,运用基于卷积神经网络的时频图像增强算法,增强实测隧道爆破信号时频图像,捕获到爆破信号能量在时频域上的聚集范围,从而重构得到反映爆破特征的真实信号;根据真实信号对爆破网络中雷管的起爆时刻进行了精确判别,识别隧道爆破雷管灾害源特征。分析表明:基于卷积神经网络的时频图像增强算法可有效抑制信号中的交叉项,最大限度地保留信号自有项,提高爆破信号能量聚集性和时频解析度;不同批次雷管混用是隧道安全的主要致灾因素,应加强监管以实现隧道安全高效施工。
  • 图  1  CNN时频图像增强流程

    Figure  1.  CNN time-frequency image enhancement process

    图  2  仿真信号波形

    Figure  2.  The waveform of simulated signal

    图  3  爆破信号时频增强流程

    Figure  3.  The flow chart of blasting signal TF enhancement

    图  4  仿真信号时频谱图像

    Figure  4.  Time frequency image of simulated signal

    图  5  隧道分叉段位置关系

    Figure  5.  Relationship of tunnel bifurcation section

    图  6  炮孔布置

    Figure  6.  The layout of blast-holes

    图  7  隧道爆破信号波形

    Figure  7.  The waveform of tunnel blasting signal

    图  8  隧道爆破振动信号时频图像

    Figure  8.  Time frequency image of tunnel blasting vibration signal

    图  9  均方误差曲线

    Figure  9.  Curve of mean square error

    图  10  真实信号波形

    Figure  10.  The waveform of authentic signal

    图  11  真实信号时-能密度曲线

    Figure  11.  Time energy density curve of authentic signal

    表  1  上台阶炮孔参数(不含空孔)

    Table  1.   The blast holes parameters(excluding empty holes)

    雷管段别 炮孔类型 孔数/个 孔深/m 炮孔装药参数 单段装药量/kg 装药系数 备注
    药卷数/卷 装药长度/m 装药量/kg
    1、3 掏槽孔 6 1.4 4 0.8 0.8 4.8 0.57 爆破体积:91.4 m3
    炸药单耗:1.16 kg/m3
    5、7 掏槽孔 6 2.9 8 1.6 1.6 9.6 0.55
    8 准直孔 14 2.7 1.5 0.3 0.3 4.2 0.11
    9 辅助孔 10 2.5 6 1.0 1.2 12.0 0.48
    11 辅助孔 18 2.5 6 1.0 1.2 21.6 0.48
    13 辅助孔 21 2.5 5 1.0 1.0 21.0 0.40
    14 周边孔 19 2.5 2.5 0.5 0.5 9.5 0.20
    15 底孔 24 2.5 7 1.4 1.4 33.6 0.56
    合计 118 116.3
    下载: 导出CSV
  • [1] 付晓强, 俞缙, 刘纪峰, 等. 隧道爆破振动信号畸变校正与混沌多重分形特征研究[J]. 振动与冲击, 2022, 41(6): 76-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202206011.htm

    Fu Xiaoqiang, Yu Jin, Liu Jifeng, et al. Distortion correction and fractal characteristics of vibration signals of a tunnel blasting[J]. Journal of Vibration and Shock, 2022, 41(6): 76-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202206011.htm
    [2] 马晨阳, 吴立, 孙苗. 自由面数量对水下钻孔爆破振动信号能量分布及衰减规律的影响[J]. 爆炸与冲击, 2022, 42(1): 145-156. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202201013.htm

    Ma Chenyang, Wu Li, Sun Miao. Influence of free surface numbers on the energy distribution and attenuation of vibration signals of underwater drilling blasting[J]. Explosion and Shock Waves, 2022, 42(1): 145-156. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202201013.htm
    [3] Fu X Q, Yu J, Dai L Y, et al. Cross-term suppression method for time-frequency spectrum of engineering blasting signals[J]. Journal of Testing and Evaluation, 2022, 50(1): 20210094. doi: 10.1520/JTE20210094
    [4] Zhao C J, et al. Blast responses of shallow-buried prefabricated modular concrete tunnels reinforced by BFRP-steel bars[J]. Underground Space, 2022, 7(2): 184-198. doi: 10.1016/j.undsp.2021.07.004
    [5] Jiang N, Jia Y, Yao Y, et al. Experimental investigation on the influence of tunnel crossing blast vibration on upper gas pipeline[J]. Engineering Failure Analysis, 2021, 127: 105490. doi: 10.1016/j.engfailanal.2021.105490
    [6] 张日强, 闫大洋, 曹洋, 等. 矿山爆破振动信号时频分析的研究进展综述[J]. 世界有色金属, 2021(16): 130-131. doi: 10.3969/j.issn.1002-5065.2021.16.058

    Zhang Riqiang, Yan Dayang, Cao Yang, et al. Review on the research progress of time-frequency analysis of mine blasting vibration signals[J]. World Nonferrous Metals, 2021(16): 130-131. doi: 10.3969/j.issn.1002-5065.2021.16.058
    [7] Xu S, Zhang C, Chen Z, et al. Accurate identification of microseismic waveforms based on an improved neural network model[J]. Journal of Applied Geophysics, 2021, 190: 104343. doi: 10.1016/j.jappgeo.2021.104343
    [8] 孙苗, 吴立, 袁青, 等. 基于CEEMDAN的爆破地震波信号时频分析[J]. 华南理工大学学报: 自然科学版, 2020, 48(3): 76-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG202003009.htm

    Sun Miao, Wu Li, Yuan Qing, et al. Time-frequency analysis of blasting seismic signal based on CEEMDAN[J]. Journal of South China University of Technology: Natural Science Edition, 2020, 48(3): 76-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG202003009.htm
    [9] Baydar N, Ball A. A comparative study of acoustic and vibration signals in detection of gear failures using Wigner-ville distribution. [J]. Mechanical Systems and Signal Processing, 2001, 15(6): 1091-1107. doi: 10.1006/mssp.2000.1338
    [10] 李清, 徐文龙, 张迪, 等. 爆破振动信号分析中模态混叠和虚假分量消除的改进方法[J]. 振动与冲击, 2019, 38(17): 197-204. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201917028.htm

    Li Qing, Xu Wenlong, Zhang Di, et al. An improved method to eliminate modal aliasing and false component in blast vibration signals[J]. Journal of Vibration and Shock, 2019, 38(17): 197-204. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201917028.htm
    [11] 单仁亮, 宋永威, 白瑶, 等. 基于小波包变换的爆破信号能量衰减特征研究[J]. 矿业科学学报, 2018, 3(2): 119-128. http://kykxxb.cumtb.edu.cn/article/id/129

    Shan Renliang, Song Yongwei, Bai Yao, et al. Research on the energy attenuation characteristics of blasting vibration signals based on wavelet packet transformation[J]. Journal of Mining Science and Technology, 2018, 3(2): 119-128. http://kykxxb.cumtb.edu.cn/article/id/129
    [12] 李桐, 陈明, 叶志伟, 等. 不同耦合介质爆破爆炸能量传递效率研究[J]. 爆炸与冲击, 2021, 41(6): 4-14. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202106001.htm

    Li Tong, Chen Ming, Ye Zhiwei, et al. Study on the energy transfer efficiency of explosive blasting with different coupling medium[J]. Explosion and Shock Waves, 2021, 41(6): 4-14. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202106001.htm
    [13] 赵明生, 张建华, 易长平. 基于小波分解的爆破振动信号RSPWVD二次型时频分析[J]. 振动与冲击, 2011, 30(2): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201102011.htm

    Zhao Mingsheng, Zhang Jianhua, Yi Changping. Blasting vibration signal RSPWVD quadratic time-frequency analysis based on wavelet decomposition[J]. Journal of Vibration and Shock, 2011, 30(2): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201102011.htm
    [14] 史秀志, 薛剑光, 陈寿如. 爆破振动信号双线性变换的二次型时频分析[J]. 振动与冲击, 2008, 27(12): 131-134, 185. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200812031.htm

    Shi Xiuzhi, Xue Jianguang, Chen Shouru. Quadratic time-frequency distribution analysis of blasting vibration signal based on bilinear transformation[J]. Journal of Vibration and Shock, 2008, 27(12): 131-134, 185. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200812031.htm
    [15] 郑江韬, 齐子豪, 刘佳存, 等. 基于卷积神经网络的煤岩微裂隙提取方法[J]. 矿业科学学报, 2022, 7(6): 680-688. doi: 10.19606/j.cnki.jmst.2022.06.005

    Zheng Jiangtao, Qi Zihao, Liu Jiacun, et al. Segmentation of micro-cracks in fractured coal based on convolutional neural network[J]. Journal of Mining Science and Technology, 2022, 7(6): 680-688. doi: 10.19606/j.cnki.jmst.2022.06.005
    [16] 付晓强, 刘纪峰, 黄凌君, 等. 城市地铁区间隧道爆破振动信号趋势项和噪声消除方法[J]. 铁道科学与工程学报, 2020, 17(9): 2328-2337. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202009019.htm

    Fu Xiaoqiang, Liu Jifeng, Huang Lingjun, et al. Trend term removal and de-noising method for blasting vibration signal of urban subway tunnel excavation[J]. Journal of Railway Science and Engineering, 2020, 17(9): 2328-2337. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202009019.htm
    [17] 韦啸, 高文学, 王林台, 等. 基于EEMD的地铁隧道爆破振动信号分析与应用研究[J]. 隧道建设(中英文), 2019, 39(8): 1293-1300. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201908014.htm

    Wei Xiao, Gao Wenxue, Wang Lintai, et al. Analysis and application of metro tunnel blasting vibration signal based on EEMD[J]. Tunnel Construction, 2019, 39(8): 1293-1300. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201908014.htm
    [18] 温廷新, 陈晓宇, 刘天宇, 等. 基于优化IGA-ELM模型的爆破振动特征参量预测研究[J]. 中国安全科学学报, 2017, 27(11): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201711008.htm

    Wen Tingxin, Chen Xiaoyu, Liu Tianyu, et al. Predicting research on characteristic parameters of blast-induced vibration based on optimized IGA-ELM model[J]. China Safety Science Journal, 2017, 27(11): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201711008.htm
    [19] 付晓强, 黄凌君, 张仁巍, 等. 基于匹配追踪算法的立井爆破信号时频特征提取[J]. 爆破器材, 2020, 49(6): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-BPQC202006010.htm

    Fu Xiaoqiang, Huang Lingjun, Zhang Renwei, et al. Time-frequency feature extraction of shaft blasting signal based on matching pursuit algorithm[J]. Explosive Materials, 2020, 49(6): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-BPQC202006010.htm
    [20] 梅比, 汪旭光, 杨仁树. 基于改进MP-WVD算法的核电厂建设爆破振动信号处理方法[J]. 爆炸与冲击, 2019, 39(4): 152-162. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201904019.htm

    Mei Bi, Wang Xuguang, Yang Renshu. Blasting vibration signal analysis technology of construction of nuclear power plant based on improved MP-WVD algorithm[J]. Explosion and Shock Waves, 2019, 39(4): 152-162. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201904019.htm
    [21] 谢全民, 贾永胜, 姚颖康, 等. 城市高架桥拆除爆破振动信号的非线性特征分析[J]. 工程力学, 2022, 39(10): 79-87. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202210008.htm

    Xie Quanmin, Jia Yongsheng, Yao Yingkang, et al. Nonlinear characteristic analysis of blasting vibration signals in the demolition of urban viaducts[J]. Engineering Mechanics, 2022, 39(10): 79-87. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202210008.htm
    [22] Liu X H, Shi G F, Liu W N. An improved empirical mode decomposition method for vibration signal[J]. Wireless Communications and Mobile Computing, 2021, 2021: 5525270.
    [23] 孙兵, 彭亚雄, 苏莹. 基于自适应CEEMD-MPE算法的矿山爆破振动信号去噪研究[J]. 爆破, 2022, 39(2): 153-158, 185. https://www.cnki.com.cn/Article/CJFDTOTAL-BOPO202202023.htm

    Sun Bing, Peng Yaxiong, Su Ying. Denoising of mine blasting vibration signal based on adaptive CEEMD-MPE algorithm[J]. Blasting, 2022, 39(2): 153-158, 185. https://www.cnki.com.cn/Article/CJFDTOTAL-BOPO202202023.htm
    [24] Wang Z Y, et al. A comparative study of delay time identification by vibration energy analysis in millisecond blasting[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60: 389-400.
    [25] 付晓强, 俞缙. 隧道爆破信号交叉项抑制及雷管延期时间研究[J]. 中国安全科学学报, 2021, 31(12): 53-61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202112008.htm

    Fu Xiaoqiang, Yu Jin. Study on cross terms suppression of tunnel blasting vibration signals and time of detonator delay[J]. China Safety Science Journal, 2021, 31(12): 53-61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202112008.htm
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  49
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-19
  • 修回日期:  2022-09-08
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回