留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚纳米Pd/S-1催化剂催化乏风瓦斯燃烧性能研究

张学里 竹涛 苑博 李辰 王美丹 张百旋

张学里, 竹涛, 苑博, 李辰, 王美丹, 张百旋. 亚纳米Pd/S-1催化剂催化乏风瓦斯燃烧性能研究[J]. 矿业科学学报, 2023, 8(3): 339-347. doi: 10.19606/j.cnki.jmst.2023.03.007
引用本文: 张学里, 竹涛, 苑博, 李辰, 王美丹, 张百旋. 亚纳米Pd/S-1催化剂催化乏风瓦斯燃烧性能研究[J]. 矿业科学学报, 2023, 8(3): 339-347. doi: 10.19606/j.cnki.jmst.2023.03.007
Zhang Xueli, Zhu Tao, Yuan Bo, Li Chen, Wang Meidan, Zhang Baixuan. Combustion performance of sub-nanometer Pd/S-1 catalyst for ventilation air methane[J]. Journal of Mining Science and Technology, 2023, 8(3): 339-347. doi: 10.19606/j.cnki.jmst.2023.03.007
Citation: Zhang Xueli, Zhu Tao, Yuan Bo, Li Chen, Wang Meidan, Zhang Baixuan. Combustion performance of sub-nanometer Pd/S-1 catalyst for ventilation air methane[J]. Journal of Mining Science and Technology, 2023, 8(3): 339-347. doi: 10.19606/j.cnki.jmst.2023.03.007

亚纳米Pd/S-1催化剂催化乏风瓦斯燃烧性能研究

doi: 10.19606/j.cnki.jmst.2023.03.007
基金项目: 

国家自然科学基金 52270114

国家重点研发计划 2019YFC1805505

中央高校基本科研业务费专项资金 2022YJSHH12

详细信息
    作者简介:

    张学里(1994—),男,山西阳泉人,博士研究生,主要从事催化剂制备及甲烷干重整方面的研究工作。Tel: 18810819553,E-mail: 414936025@qq.com

    通讯作者:

    竹涛(1979—),男,山西临猗人,博士,教授,博士生导师,主要从事甲烷催化氧化、甲烷干重整、低温等离子体降解VOCs等方面的研究工作。Tel: 010-62339170,E-mail: bamboozt@cumtb.edu.cn

  • 中图分类号: X5

Combustion performance of sub-nanometer Pd/S-1 catalyst for ventilation air methane

  • 摘要: 煤矿开采导致乏风瓦斯的大量排出,不仅对环境造成较大影响,而且与我国“双碳”理念相违背。本研究通过一锅水热法制备了一种封装在Silicalite-1分子筛载体中的亚纳米Pd团簇催化剂。通过XRD、BET、SEM、XPS和TEM对催化材料的物相组成、孔结构参数、微观形貌、元素化学态以及活性组分Pd的存在状态进行表征,探讨了活性组分负载量、空速和反应温度对催化性能的影响。研究结果表明:采用一锅水热法成功将Pd团簇封装在Silicalite-1分子筛载体孔道内,制备出高分散度的亚纳米Pd团簇催化剂;随着Pd负载量的增加,催化性能呈现先升高后降低的趋势,这是由于Pd原子间产生团聚效应,导致部分Pd原子被包覆,降低了活性组分与反应物间的接触面积;以Silicalite-1分子筛为载体,可以促进活性位点骨架氧向表面羟基转化,有助于甲烷催化氧化。对比现有甲烷催化氧化工艺,本研究制备的催化剂具有催化活性高、制备方法简单、处理成本低等优点。
  • 图  1  亚纳米Pd/S-1催化剂制备示意图

    Figure  1.  Preparation schematic diagram of sub-nanometer Pd/S-1 catalyst

    图  2  实验装置示意图

    Figure  2.  Schematic diagram of experimental device

    图  3  S-1纯硅分子筛与不同负载量催化剂XRD图谱

    Figure  3.  XRD of S-1 molecular sieve and catalysts with different loadings

    图  4  S-1纯硅分子筛与不同负载量催化剂吸/脱附曲线和孔径分布

    V—材料孔体积,cm3W—材料质量,g

    Figure  4.  Adsorption/desorption curve and pore size distribution diagram of S-1 molecular sieve and catalysts with different loadings

    图  5  S-1纯硅分子筛与0.75 % Pd/S-1催化剂的SEM图像

    Figure  5.  SEM image of S-1 molecular sieve and 0.75 % Pd/S-1 catalyst

    图  6  0.75 % Pd/S-1催化剂的HADDF-STEM图像

    Figure  6.  HADDF-STEM image of 0.75 % Pd/S-1 catalyst

    图  7  0.75 % Pd/S-1催化剂在Ar+刻蚀前后Pd 3d的XPS图谱

    Figure  7.  XPS spectra of Pd 3d of 0.75 % Pd/S-1 catalyst before and after Ar+etching

    图  8  不同Pd负载量催化剂在不同空速下的甲烷转化率

    Figure  8.  Methane conversion rate of catalysts with different Pd loadings at different airspeed

    图  9  不同Pd负载量催化剂空速为100 000 mL/(g·h)时的Arrhenius图与0.75 % Pd/S-1催化剂在不同空速、450 ℃条件下的稳定性测试图

    Figure  9.  Arrhenius of catalysts with different Pd loadings at 100 000 mL/(g·h), and stability diagram of 0.75 % Pd/S-1 catalyst at different airspeed and 450 ℃

    图  10  甲烷在Pd/S-1催化剂上的催化机理

    Figure  10.  Catalytic mechanism diagram of methane on Pd/S-1 catalyst

    表  1  催化实验条件

    序号 甲烷浓度/% Pd负载量/% 空速/(mL·g-1·h-1) 催化燃烧温度/℃
    1 1 0,0.5,0.75,1 50 000 200~500
    2 1 0,0.5,0.75,1 80 000 200~500
    3 1 0,0.5,0.75,1 100 000 200~500
    4 1 0.75 50 000,80 000,100 000 200~500
    下载: 导出CSV

    表  2  不同Pd负载量在不同空速下的甲烷转化温度

    Table  2.   Methane conversion temperature with different Pd loading at different airspeed

    空速/(mL·g-1·h-1) 0.5% Pd/S-1 0.75% Pd/S-1 1% Pd/S-1
    T50%/℃ T90%/℃ T50%/℃ T90%/℃ T50%/℃ T90%/℃
    50 000 350 400 320 350 320 380
    80 000 355 415 320 350 325 395
    100 000 360 460 325 370 325 390
    下载: 导出CSV
  • [1] 曹敏敏, 王雪峰, 王荀, 等. 煤矿低浓度甲烷利用技术研究进展[J]. 煤炭技术, 2022, 41(1): 101-105. doi: 10.13301/j.cnki.ct.2022.01.023

    Cao Minmin, Wang Xuefeng, Wang Xun, et al. Research progress on utilization technology of low concentration methane in coal mines[J]. Coal Technology, 2022, 41(1): 101-105. doi: 10.13301/j.cnki.ct.2022.01.023
    [2] 陈晓迈, 石雪风, 刘美茵, 等. 封装型Pd@S-1催化剂中Pd状态对低浓度甲烷催化氧化性能的影响[J]. 环境科学学报, 2023, 43(3): 394-404. doi: 10.13671/j.hjkxxb.2022.0229

    Chen Xiaomai, Shi Xuefeng, Liu Meiyin, et al. The effect of Pd state of encapsulated Pd@S-1 catalyst on the catalytic oxidation performance of low concentration methane[J]. Acta Scientiae Circumstantiae, 2023, 43(3): 394-404. doi: 10.13671/j.hjkxxb.2022.0229
    [3] 王鹏飞, 冯涛, 陈丽娟, 等. 煤矿乏风低浓度甲烷催化氧化数值模拟[J]. 环境工程, 2012, 30(3): 67-71. doi: 10.13205/j.hjgc.2012.03.010

    Wang Pengfei, Feng Tao, Chen Lijuan, et al. Numerical simulation of catalytic oxidation of coal mine ventilation air low concentriation methane[J]. Environmental Engineering, 2012, 30(3): 67-71. doi: 10.13205/j.hjgc.2012.03.010
    [4] Mahara Y, Ohyama J, Tojo T, et al. Enhanced activity for methane combustion over a Pd/Co/Al2O3 catalyst prepared by a galvanic deposition method[J]. Catalysis Science & Technology, 2016, 6(13): 4773-4776.
    [5] 袁善良, 兰海, 薄其飞, 等. TiO2掺杂CuMnCe/Al2O3催化剂对甲烷催化燃烧脱氧反应的影响[J]. 燃料化学学报, 2017, 45(2): 243-248. doi: 10.3969/j.issn.0253-2409.2017.02.015

    Yuan Shanliang, Lan Hai, Bo Qifei, et al. Effect of TiO2 doping on methane catalytic combustion deoxidation of CuMnCe/Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, 2017, 45(2): 243-248. doi: 10.3969/j.issn.0253-2409.2017.02.015
    [6] Yang N T, Ren Z L, Yang C G, et al. Direct oxidation of CH4 to HCOOH over extra-framework stabilized Fe@MFI catalyst at low temperature[J]. Fuel, 2021, 305(6): 121624.
    [7] Bu X Y, Ran J Y, Niu J T, et al. Reaction mechanism insights into CH4 catalytic oxidation on Pt13 cluster: a DFT study[J]. Molecular Catalysis, 2021, 515: 111891. doi: 10.1016/j.mcat.2021.111891
    [8] Gao M Y, Gong Z M, Weng X F, et al. Methane combustion over palladium catalyst within the confined space of MFI zeolite[J]. Chinese Journal of Catalysis, 2021, 42(10): 1689-1699. doi: 10.1016/S1872-2067(20)63775-5
    [9] Niu R Y, Liu P C, Li W, et al. High performance for oxidation of low-concentration methane using ultra-low Pd in silicalite-1 zeolite[J]. Microporous and Mesoporous Materials, 2019, 284: 235-240. doi: 10.1016/j.micromeso.2019.04.044
    [10] Murata K, Mahara Y, Ohyama J, et al. The metal-support interaction concerning the particle size effect of Pd/Al2O3 on methane combustion[J]. Angewandte Chemie: International Ed in English, 2017, 56(50): 15993-15997. doi: 10.1002/anie.201709124
    [11] 王智辉. 用于甲烷催化燃烧的金属氧化物及贵金属催化剂制备、表征及性能研究[D]. 广州: 华南理工大学, 2014.
    [12] Polfus J M, Løvvik O M, Bredesen R, et al. Hydrogen induced vacancy clustering and void formation mechanisms at grain boundaries in palladium[J]. Acta Materialia, 2020, 195: 708-719. doi: 10.1016/j.actamat.2020.06.007
    [13] Morales-García Á, Rubeš M, Nachtigall P. The interaction of Pd clusters with the bulk and layered two-dimensional Silicalite-1 supports[J]. Catalysis Today, 2016, 277: 108-117. doi: 10.1016/j.cattod.2016.01.008
    [14] Xiao C, Yang Y, Meng D, et al. Stable and active monolithic palladium catalyst for catalytic oxidation of methane using nanozeolite silicalite-1 coating on cordierite[J]. Applied Catalysis A: General, 2017, 531: 197-202. doi: 10.1016/j.apcata.2016.11.004
    [15] Zhang Z S, Sun L W, Hu X F, et al. Anti-sintering Pd@silicalite-1 for methane combustion: effects of the moisture and SO2[J]. Applied Surface Science, 2019, 494: 1044-1054. doi: 10.1016/j.apsusc.2019.07.252
    [16] Peng H G, Dong T, Yang S Y, et al. Intra-crystalline mesoporous zeolite encapsulation-derived thermally robust metal nanocatalyst in deep oxidation of light alkanes[J]. Nature Communications, 2022, 13(1): 1-10. doi: 10.1038/s41467-021-27699-2
    [17] Xue W J, Mei D H. Mechanistic understanding of methane combustion over H-SSZ-13 zeolite encapsulated palladium nanocluster catalysts[J]. Chemical Engineering Journal, 2022, 444: 136671. doi: 10.1016/j.cej.2022.136671
    [18] Yang L J, Cheng C Q, Zhang X, et al. Dual-site collaboration boosts electrochemical nitrogen reduction on Ru-S-C single-atom catalyst[J]. Chinese Journal of Catalysis, 2022, 43(12): 3177-3186. doi: 10.1016/S1872-2067(22)64136-6
    [19] Guo Y, Liu J W, Yang Q, et al. Regulating nitrogenous adsorption and desorption on Pd clusters by the acetylene linkages of hydrogen substituted graphdiyne for efficient electrocatalytic ammonia synthesis[J]. Nano Energy, 2021, 86: 106099. doi: 10.1016/j.nanoen.2021.106099
    [20] Petrov A W, Ferri D, Kröcher O, et al. Design of stable palladium-based zeolite catalysts for complete methane oxidation by postsynthesis zeolite modification[J]. ACS Catalysis, 2019, 9(3): 2303-2312.
    [21] Zhang Y H, Cai Y F, Guo Y, et al. The effects of the Pd chemical state on the activity of Pd/Al2O3 catalysts in CO oxidation[J]. Catalysis Science & Technology, 2014, 4(11): 3973-3980.
    [22] Shen Y X, Lu G Z, Guo Y, et al. Study on the catalytic reaction mechanism of low temperature oxidation of CO over Pd-Cu-Clx/Al2O3 catalyst[J]. Catalysis Today, 2011, 175(1): 558-567.
    [23] Wen B, Sun Q, Sachtler W M H. Function of Pdn0 clusters, Pd2+(oxo-) ions, and PdO clusters in the catalytic reduction of NO with methane over Pd/MFI catalysts[J]. Journal of Catalysis, 2001, 204(2): 314-323.
    [24] Monai M, Montini T, Gorte R J, et al. Catalytic oxidation of methane: Pd and beyond[J]. European Journal of Inorganic Chemistry, 2018(25): 2884-2893.
    [25] Guo T Y, Du J P, Wu J T, et al. Structure and kinetic investigations of surface-stepped CeO2-supported Pd catalysts for low-concentration methane oxidation[J]. Chemical Engineering Journal, 2016, 306: 745-753.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  30
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-15
  • 修回日期:  2023-01-29
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回