留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深层页岩蒙脱石表面水化抑制机理的分子动力学模拟

李东波 李广洲 刘秦龙 芦苇

李东波, 李广洲, 刘秦龙, 芦苇. 深层页岩蒙脱石表面水化抑制机理的分子动力学模拟[J]. 矿业科学学报, 2023, 8(3): 329-338. doi: 10.19606/j.cnki.jmst.2023.03.006
引用本文: 李东波, 李广洲, 刘秦龙, 芦苇. 深层页岩蒙脱石表面水化抑制机理的分子动力学模拟[J]. 矿业科学学报, 2023, 8(3): 329-338. doi: 10.19606/j.cnki.jmst.2023.03.006
Li Dongbo, Li Guangzhou, Liu Qinlong, Lu Wei. Mechanisms of hydration inhibition on the surface of montmorillonite in deep shale via molecular dynamic simulation[J]. Journal of Mining Science and Technology, 2023, 8(3): 329-338. doi: 10.19606/j.cnki.jmst.2023.03.006
Citation: Li Dongbo, Li Guangzhou, Liu Qinlong, Lu Wei. Mechanisms of hydration inhibition on the surface of montmorillonite in deep shale via molecular dynamic simulation[J]. Journal of Mining Science and Technology, 2023, 8(3): 329-338. doi: 10.19606/j.cnki.jmst.2023.03.006

深层页岩蒙脱石表面水化抑制机理的分子动力学模拟

doi: 10.19606/j.cnki.jmst.2023.03.006
基金项目: 

国家自然科学基金 51878547

国家自然科学基金 52008332

陕西省教育厅专项 21JK0711

详细信息
    作者简介:

    李东波(1982—),男,河北邢台人,博士,教授,博士生导师,主要从事微纳米力学等方面的研究工作。Tel:13379099527,E-mail:ldb@xauat.edu.cn

  • 中图分类号: TE21

Mechanisms of hydration inhibition on the surface of montmorillonite in deep shale via molecular dynamic simulation

  • 摘要: 井壁失稳是油气勘探开发过程中最为复杂的技术难题之一,黏土矿物水化膨胀是造成井壁失稳的关键因素,其中表面水化因水化势较大而难以去除。本文通过分子动力学模拟探测了无机盐对蒙脱石表面水化的抑制效果,以及浓度、温度和压强对水化抑制效果的影响,揭示了无机盐CaCl2抑制蒙脱石表面水化的微观机理。研究表明:抑制阳离子通过束缚蒙脱石表面水分子和降低水分子输运传导能力,从而调控水分子侵入蒙脱石表面来实现抑制作用。无机盐抑制表面水化能力依次为CaCl2>NaCl>MgCl2>KCl,钙离子易吸附表面水分子形成稳定的外球络合结构。随着CaCl2浓度增加,钙离子配位数、水化数和水化半径均降低,抑制能力减弱;温度升高和压强降低时,体系中水分子传导输运能力增强、钙离子水化数减小且力学强度降低。
  • 图  1  脱水蒙脱石模型(单位:nm)

    Figure  1.  Dehydrated montmorillonite model

    图  2  蒙脱石表面水化建模过程(单位:nm)

    Figure  2.  Modeling process of surface hydration of montmorillonite

    图  3  4种无机阳离子与水中氧原子的径向分布函数

    Figure  3.  Radial distribution function of four inorganic cations with oxygen atom in water

    图  4  无机阳离子配位数、水化数和水化半径

    Figure  4.  Coordination number, hydration number and hydration radius of inorganic salt cation

    图  5  蒙脱石(0 0 1)面法线方向水分子浓度分布

    Figure  5.  Concentration profile of H2O in the normal direction of montmorillonite(0 0 1)surface

    图  6  钙离子、水中氧和水中氢的浓度分布

    Figure  6.  Concentration profile of Ca2+, O and H in water

    图  7  不同浓度下CaCl2的水化参数

    Figure  7.  Hydration parameter of different CaCl2 concentrations

    图  8  不同温压下水分子的扩散系数和钙离子配位数

    Figure  8.  Diffusion coefficients of water and coordination number of Ca2+ at different temperature and pressure

    图  9  不同温压下弹性参数

    Figure  9.  Elastic parameters at different temperature and pressure

    表  1  脱水蒙脱石弹性常数与实验值和模拟值对比

    Table  1.   Elastic constants of dehydrated montmorillonite compared to experimentat and simulation values

    Cij 弹性常数/GPa
    本文值 模拟值[18] 实验值[25]
    C11 255.181 272.3 181.0±1.2
    C22 334.081 323.6 178.4±1.3
    C33 50.821 -7.2 58.6±0.6
    C44 18.989 -2.3 16.5±0.6
    C55 31.793 -6.2 19.5±0.5
    C66 69.162 72.6 72.0±0.7
    C12 123.128 129.9 48.8±2.5
    C13 35.993 30.3 25.6±1.5
    C14 -1.162 8.2
    C15 -66.37 -16.2 -14.2±0.8
    C16 -1.020 -12.2
    C23 29.983 2.2 21.2±1.8
    C24 12.563 4.1
    C25 -26.728 -8.1 1.1±3.7
    C26 3.843 -3.2
    C34 0.914 -5.7
    C35 -2.114 11.9 1.0±0.6
    C36 -0.225 8.8
    C45 -0.734 2.5
    C46 -14.541 2.1 -5.2±0.9
    C56 -0.816 -3.1
    下载: 导出CSV

    表  2  脱水蒙脱石力学性质的计算结果与实验值和模拟值

    Table  2.   Computed results of dehydrated montmorillonite mechanical properties compared to experiment and simulation values

    力学参量 本文值 模拟值[18] 实验值[25]
    体积模量/GPa 79.889 57 63.4±8
    剪切模量/GPa 38.144 17 26.2±6
    x方向弹性模量/GPa 86.246 246
    y方向弹性模量/GPa 257.438 251 222
    z方向弹性模量/GPa 41.674 15
    泊松比 0.254 0.242 0.255
    下载: 导出CSV
  • [1] Rana A, Khan I, Ali S, et al. Controlling shale swelling and fluid loss properties of water-based drilling mud via ultrasonic impregnated SWCNTs/PVP nanocomposites[J]. Energy & Fuels, 2020, 34(8): 9515-9523.
    [2] Anderson R L, Ratcliffe I, Greenwell H C, et al. Clay swelling—A challenge in the oilfield[J]. Earth-Science Reviews, 2010, 98(3/4): 201-216.
    [3] Muhammed N S, Olayiwola T, Elkatatny S. A review on clay chemistry, characterization and shale inhibitors for water-based drilling fluids[J]. Journal of Petroleum Science and Engineering, 2021, 206: 109043. doi: 10.1016/j.petrol.2021.109043
    [4] Gholami R, Elochukwu H, Fakhari N, et al. A review on borehole instability in active shale formations: Interactions, mechanisms and inhibitors[J]. Earth-Science Reviews, 2018, 177: 2-13. doi: 10.1016/j.earscirev.2017.11.002
    [5] 洪祥宇, 徐亨宇, 崔风路, 等. 分子模拟在非常规油气开发中的应用[J]. 计算力学学报, 2021, 38(3): 313-320. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202103007.htm

    Hong Xiangyu, Xu Hengyu, Cui Fenglu, et al. Application of molecular simulation in unconventional oil and gas development[J]. Chinese Journal of Computational Mechanics, 2021, 38(3): 313-320. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202103007.htm
    [6] 范竞存, 余昊, 陈杰, 等. 非常规油气开采中的微纳米力学问题研究进展[J]. 中国科学技术大学学报, 2017, 47(2): 142-154. doi: 10.3969/j.issn.0253-2778.2017.02.005

    Fan Jingcun, Yu Hao, Chen Jie, et al. Research progress of micro/nano mechanical problems in unconventional oil and gas exploitation[J]. Journal of University of Science and Technology of China, 2017, 47(2): 142-154. doi: 10.3969/j.issn.0253-2778.2017.02.005
    [7] 何满潮, 韩宗芳, 杨华. 不同温度下高岭石变形及破坏机理的分子动力学模拟[J]. 矿业科学学报, 2019, 4(1): 8-16. doi: 10.19606/j.cnki.jmst.2019.01.002

    He Manchao, Hanzongfang, Yang Hua. Molecular dynamics simulation of deformation and failure mechanism of kaolinite at different temperatures[J]. Journal of Mining Science and Technology, 2019, 4(1): 8-16. doi: 10.19606/j.cnki.jmst.2019.01.002
    [8] Han Z F, Cui Y, Meng Q, et al. The effect of inorganic salt on the mechanical properties of montmorillonite and its mechanism: a molecular dynamics study[J]. Chemical Physics Letters, 2021, 781: 138982. doi: 10.1016/j.cplett.2021.138982
    [9] Zhang Y Y, Xiao C. Molecular dynamics simulation of clay hydration inhibition of deep shale[J]. Processes, 2021, 9(6): 1069. doi: 10.3390/pr9061069
    [10] Planková B, Lísal M. Molecular dynamics of aqueous salt solutions in clay nanopores under the thermodynamic conditions of hydraulic fracturing: Interplay between solution structure and molecular diffusion[J]. Fluid Phase Equilibria, 2020, 505: 112355. doi: 10.1016/j.fluid.2019.112355
    [11] Svoboda M, Lísal M. Concentrated aqueous sodium chloride solution in clays at thermodynamic conditions of hydraulic fracturing: insight from molecular dynamics simulations[J]. The Journal of Chemical Physics, 2018, 148(22): 222806. doi: 10.1063/1.5017166
    [12] 徐加放, 顾甜甜, 沈文丽, 等. 无机盐对蒙脱石弹性力学参数影响的分子模拟与实验研究[J]. 中国石油大学学报: 自然科学版, 2016, 40(2): 83-90. doi: 10.3969/j.issn.1673-5005.2016.02.010

    Xu Jiafang, Gu Tiantian, Shen Wenli, et al. Influence simulation of inorganic salts on montmorillonite elastic mechanical parameters and experimental study[J]. Journal of China University of Petroleum: Edition of Natural Science, 2016, 40(2): 83-90. doi: 10.3969/j.issn.1673-5005.2016.02.010
    [13] 李小迪. 典型页岩抑制剂抑制蒙脱石水化机理的分子模拟[D]. 东营: 中国石油大学(华东), 2016.
    [14] 罗亚飞. Na-蒙脱石表面水化抑制机理的分子模拟[D]. 成都: 西南石油大学, 2019.
    [15] 谢刚. 黏土矿物表面水化抑制作用机理研究[D]. 成都: 西南石油大学, 2017.
    [16] Boek E S, Coveney P V, Skipper N T. Molecular modeling of clay hydration: a study of hysteresis loops in the swelling curves of sodium montmorillonites[J]. Langmuir, 1995, 11(12): 4629-4631. doi: 10.1021/la00012a008
    [17] Loewenstein W. The distribution of aluminum in the tetrahedra of silicates and aluminates[J]. American Mineralogist, 1954, 39(1): 92-97.
    [18] Zheng Y, Zaoui A. Mechanical behavior in hydrated Na-montmorillonite clay[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 505: 582-590. doi: 10.1016/j.physa.2018.03.093
    [19] Cygan R T, Liang J J, Kalinichev A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. The Journal of Physical Chemistry B, 2004, 108(4): 1255-1266. doi: 10.1021/jp0363287
    [20] Al-Zaoari K, Zheng Y Y, Wei P C, et al. Early stage of swelling process of dehydrated montmorillonite through molecular dynamics simulation[J]. Materials Chemistry and Physics, 2022, 283: 126015. doi: 10.1016/j.matchemphys.2022.126015
    [21] Wei P C, Zhang L L, Zheng Y Y, et al. Nanoscale friction characteristics of hydrated montmorillonites using molecular dynamics[J]. Applied Clay Science, 2021, 210: 106155. doi: 10.1016/j.clay.2021.106155
    [22] 况联飞. 饱和蒙脱土高压力学特性基本机制多尺度研究[D]. 徐州: 中国矿业大学, 2013.
    [23] Nosé S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 81(1): 511-519. doi: 10.1063/1.447334
    [24] Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath[J]. The Journal of Chemical Physics, 1984, 81(8): 3684-3690. doi: 10.1063/1.448118
    [25] Vaughan M T, Guggenheim S. Elasticity of muscovite and its relationship to crystal structure[J]. Journal of Geophysical Research Atmospheres, 1986, 91(B5): 4657-4664. doi: 10.1029/JB091iB05p04657
    [26] Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behaviour of polycrystals[J]. Journal of the Mechanics and Physics of Solids, 1962, 10(4): 343-352. doi: 10.1016/0022-5096(62)90005-4
    [27] Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behaviour of multiphase materials[J]. Journal of the Mechanics and Physics of Solids, 1963, 11(2): 127-140. doi: 10.1016/0022-5096(63)90060-7
    [28] Hill R. The elastic behaviour of a crystalline aggregate[J]. Proceedings of the Physical Society Section A, 1952, 65(5): 349-354. doi: 10.1088/0370-1298/65/5/307
    [29] 张亚云, 陈勉, 邓亚, 等. 温压条件下蒙脱石水化的分子动力学模拟[J]. 硅酸盐学报, 2018, 46(10): 1489-1498. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201810022.htm

    Zhang Yayun, Chen Mian, Deng Ya, et al. Molecular dynamics simulation of temperature and pressure effects on hydration characteristics of montmorillonites[J]. Journal of the Chinese Ceramic Society, 2018, 46(10): 1489-1498. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201810022.htm
    [30] 徐加放, 孙泽宁, 刘洪军, 等. 分子模拟无机盐抑制蒙脱石水化机理[J]. 石油学报, 2014, 35(2): 377-384. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201402022.htm

    Xu Jiafang, Sun Zening, Liu Hongjun, et al. Molecular simulation for inorganic salts inhibition mechanism on montmorillonite hydration[J]. Acta Petrolei Sinica, 2014, 35(2): 377-384. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201402022.htm
    [31] Zhang L H, Lu X C, Liu X D, et al. Hydration and mobility of interlayer ions of(Nax, Cay)-montmorillonite: a molecular dynamics study[J]. The Journal of Physical Chemistry C, 2014, 118(51): 29811-29821. doi: 10.1021/jp508427c
    [32] Sposito G, Skipper N T, Sutton R, et al. Surface geochemistry of the clay minerals[J]. PNAS, 1999, 96(7): 3358-3364.
    [33] 彭陈亮. 蒙脱石界面水化及疏水调控机理的量子力学/分子动力学研究[D]. 淮南: 安徽理工大学, 2016.
    [34] Li X, Zhu C, Jia Z Q, et al. Confinement effects and mechanistic aspects for montmorillonite nanopores[J]. Journal of Colloid and Interface Science, 2018, 523: 18-26.
    [35] Yu H, Xu H Y, Fan J C, et al. Transport of shale gas in microporous/nanoporous media: molecular to pore-scale simulations[J]. Energy & Fuels, 2021, 35(2): 911-943.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  226
  • HTML全文浏览量:  75
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-26
  • 修回日期:  2022-11-28
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回