留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BGL气化过程中煤热解特性数值分析与研究

张利合 许德平 徐振刚 王永刚

张利合, 许德平, 徐振刚, 王永刚. BGL气化过程中煤热解特性数值分析与研究[J]. 矿业科学学报, 2023, 8(2): 232-241. doi: 10.19606/j.cnki.jmst.2023.02.010
引用本文: 张利合, 许德平, 徐振刚, 王永刚. BGL气化过程中煤热解特性数值分析与研究[J]. 矿业科学学报, 2023, 8(2): 232-241. doi: 10.19606/j.cnki.jmst.2023.02.010
Zhang Lihe, Xu Deping, Xu Zhengang, Wang Yonggang. Numerical analysis and research on coal pyrolysis characteristics in BGL gasification process[J]. Journal of Mining Science and Technology, 2023, 8(2): 232-241. doi: 10.19606/j.cnki.jmst.2023.02.010
Citation: Zhang Lihe, Xu Deping, Xu Zhengang, Wang Yonggang. Numerical analysis and research on coal pyrolysis characteristics in BGL gasification process[J]. Journal of Mining Science and Technology, 2023, 8(2): 232-241. doi: 10.19606/j.cnki.jmst.2023.02.010

BGL气化过程中煤热解特性数值分析与研究

doi: 10.19606/j.cnki.jmst.2023.02.010
基金项目: 

国家自然科学基金 42030807

详细信息
    作者简介:

    张利合(1977—),男,山东济宁人,博士研究生,高级工程师,主要从事洁净煤技术、煤化工方面的研究工作。E-mail:zhanglih@chinacoal.com

    通讯作者:

    许德平(1963—),男,江苏泰州人,教授,主要从事洁净煤技术、煤化工方面的研究工作。E-mail:xdp1073@163.com

  • 中图分类号: TD984

Numerical analysis and research on coal pyrolysis characteristics in BGL gasification process

  • 摘要: 厘清煤颗粒热解的内部温度变化和挥发分析出规律,是优化炉体结构和操作参数、进一步提升BGL煤气化经济性的基础。本文通过剖析BGL煤气化热解过程构建了煤颗粒热解模型,并利用文献实验数据验证了模型合理性。模型求解采用解耦算法,其中传热模型采用追赶法,热解动力学模型采用4阶单步递推法,环境温度由移动床一维模型计算。模拟结果表明:BGL煤气化热解终温较高,颗粒内部径向温度变化大;粒径取10 mm,热解终温计算值1 372 K,煤颗粒表面和中心温差峰值计算值338 K;粒径取40 mm,相应计算值分别为1 412 K和381 K;煤颗粒挥发分析出过程与气固非催化缩核反应过程相似,印证了煤热解过程受传热过程控制;热解动力学的描述以FZ通用热解模型适应性更好;移动床一维模型预测BGL煤气化热解层高度时,热解蒸发模型优于FZ通用热解模型,预测值为0.616 5 m,与搅拌器运行情况相符。
  • 图  1  DAEM和通用热解模型挥发分析出速率

    Figure  1.  Comparison of devolatilization rate between DAEM model and general pyrolysis

    图  2  BGL煤气化热解段气固相温度变化

    Figure  2.  Temperature changes of gas-solid phase in the pyrolysis section of BGL coal gasification

    图  3  煤颗粒挥发分析出量实验值与模拟值对比

    Figure  3.  Comparison between experimental and simulated values of coal particles devolatilization

    图  4  煤颗粒挥发分析出速率实验值与模拟值对比

    Figure  4.  Comparison between experimental and simulated values of coal particles devolatilization

    图  5  20 mm煤颗粒内部不同时刻径向温度分布

    Figure  5.  Radial temperature distribution in 20 mm coal particles at different times

    图  6  不同粒径的煤颗粒表面和中心温度变化曲线

    Figure  6.  Surface and center temperature curves of coal particles with different sizes

    图  7  不同粒径的煤颗粒表面和中心温差变化曲线

    Figure  7.  Curves of temperature difference between surface and center of coal particles with different sizes

    图  8  20 mm煤颗粒不同时刻内部挥发分径向分布

    Figure  8.  Radial distribution of volatile matter in 20 mm coal particles at different times

    图  9  不同粒径煤颗粒总挥发分析出速率变化

    Figure  9.  Changes of devolatilization rate of coal particles with different particle sizes

    图  10  BGL煤气化热解层挥发分析轴向变化曲线

    Figure  10.  Axial changing curves of devolatilization in BGL coal gasification pyrolysis layer

    表  1  原料煤工业分析和元素分析

    Table  1.   Proximate analysis and ultimate analysis of raw coal

    工业分析(分析基)质量分数/% 元素分析(干燥无灰基)质量分数/%
    Mtad A V FC C H O N S
    1.65 6.62 33.21 58.62 82.35 4.80 10.93 1.14 0.77
    下载: 导出CSV

    表  2  原料煤样热解试验与结果

    Table  2.   Pyrolysis test of coal samples and its results

    序号 试验方法 单次煤样/g 粒度/mm 加热终温/℃ 操作压力/MPa 半焦/% 焦油/% 热解气/%
    a 铝甑热解试验 20 < 0.2 650 0.1 73.00 10.70 8.55
    b 加压低温干馏试验 60 0.5~2.0 650 0.1 68.67 8.85 12.82
    c 加压低温干馏试验 60 0.5~2.0 650 3.0 74.32 3.75 14.93
    d 固定床热解试验 3 000 10~50 650 0.1 76.73 5.90 8.98
    下载: 导出CSV

    表  3  3 kg固定床热解试验产物随温度变化

    Table  3.   Changes of pyrolysis products of 3 kg fixed bed under different temperature

    温度/℃ 半焦/% 水/% 焦油/% 煤气/%
    623 71.15 11.17 6.78 10.90
    650 70.65 11.90 7.47 9.98
    675 70.87 11.92 7.90 9.31
    700 69.78 11.93 7.35 10.94
    725 69.52 11.83 9.40 9.25
    750 69.10 11.67 10.35 8.88
    775 65.47 11.87 9.41 13.25
    800 65.17 11.83 8.00 15.00
    下载: 导出CSV

    表  4  BGL最终粗煤气和热解气组分摩尔流量

    Table  4.   Molar flow rate of each component of final crude gas and pyrolysis gas from BGL coal gasification mol/s

    项目 H2 CO CO2 CH4 H2O C2H4 H2S N2 合计
    粗煤气 199.8 416.2 29.6 60.8 79.1 2.8 1.9 3.2 793.4
    热解气 31.8 26.2 2.7 56.7 20.8 2.8 1.9 3.2 146.2
    下载: 导出CSV

    表  5  煤颗粒热解物性参数模型

    Table  5.   Physical parameter model of coal particle pyrolysis

    名称 模型
    煤高位发热量 Qgr,daf=334.5Cdaf+1 275.4Hdaf-108.7Odaf+92St,daf-max[0,25.1(Ad-10)]
    固定碳显焓 $\begin{aligned} & h_{\mathrm{fc}}=R \cdot\left[380 \cdot g_0\left(\frac{380}{T}\right)+3600 \cdot g_0\left(\frac{1800}{T}\right)\right] \\ & g_0=\frac{1}{\mathrm{e}^z-1} \\ & g_1=\mathrm{e}^z\left(\frac{z}{\mathrm{e}^z-1}\right)^2 \end{aligned}$
    挥发分比热 Cp,vol=0.9Cp,vol1+0.1Cp,vol2
    基本挥发分Cp,vol1=728+3.391T
    次级挥发分Cp,vol2=2 273+2.554T
    灰分比热 Cp,vol1=594+0.586T
    焦油比热 Cp,tar=88.627+0.120 74T-0.127 35×10-4T2-0.366 88×10-7T-2
    对流给热系数 $h=N u \frac{\lambda}{d_p}$
    努赛尔数Nu=2.0+1.2Re0.5Pr0.33(Re为颗粒局域雷诺数,Pr为普朗特数)
    颗粒比热容 $C_p= \begin{cases}1 & 254, T_{\mathrm{s}}<623 \\ 1 & 254-1.75\left(T_{\mathrm{s}}-623\right), T_{\mathrm{s}} \geqslant 623\end{cases}$
    颗粒热导率 $\lambda_p=\left\{\begin{array}{l} 0.23, T_{\mathrm{s}}<673 \\ 0.23+2.24 \times 10^{-5}\left(1+0.0033 T_{\mathrm{s}}\right)^{1.8}, T_{\mathrm{s}} \geqslant 673 \end{array}\right.$
    下载: 导出CSV
  • [1] 张明. 煤制合成天然气技术与应用[M]. 北京: 化学工业出版社, 2017.
    [2] He W J, Liu Z Y, Liu Q Y, et al. Behaviors of radical fragments in tar generated from pyrolysis of 4 coals[J]. Fuel, 2014, 134: 375-380. doi: 10.1016/j.fuel.2014.05.064
    [3] 苏倩倩, 李文军, 陈艳鹏, 等. 大块煤热解温度场扩展规律的实验研究[J]. 洁净煤技术. https://doi.org/10.13226/j.issn.1006-6772.21092204 doi: 10.13226/j.issn.1006-6772.21092204

    Su Qianqian, Li Wenjun, Chen Yanpeng, et al. Experi mental study on temperature field expansion law of largeblock coal pyrolysis[J]. Clean Coal Technology. https://doi.org/10.13226/j.issn.1006-6772.21092204 doi: 10.13226/j.issn.1006-6772.21092204
    [4] 钱亚男. 外热式内构件固定床/移动床煤热解反应器的数值模拟[D]. 北京: 中国科学院大学, 2018.
    [5] Bhoi S, Banerjee T, Mohanty K. Molecular dynamic simulation of spontaneous combustion and pyrolysis of brown coal using ReaxFF[J]. Fuel, 2014, 136: 326-333. doi: 10.1016/j.fuel.2014.07.058
    [6] Chern J S, Hayhurst A N. A model for the devolatilization of a coal particle sufficiently large to be controlled by heat transfer[J]. Combustion and Flame, 2006, 146(3): 553-571. doi: 10.1016/j.combustflame.2006.04.011
    [7] 齐国利, 董芃, 张玉, 等. 大颗粒生物质高温热解模型的建立及数值模拟[J]. 太阳能学报, 2011, 32(7): 1058-1063. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201107019.htm

    Qi Guoli, Dong Peng, Zhang Yu, et al. Construction of large biomass high temperature pyrolysis model and numerical simulation[J]. Acta Energiae Solaris Sinica, 2011, 32(7): 1058-1063. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201107019.htm
    [8] 孟德喜. 块状原煤及煤焦热解气化过程中的反应特性和结构演变研究[D]. 上海: 华东理工大学, 2020.
    [9] 胡国新, 田伟学, 许伟, 等. 大颗粒煤在移动床中的热解模型[J]. 上海交通大学学报, 2001, 35(5): 733-736. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT200105023.htm

    Hu Guoxin, Tian Weixue, Xu Wei, et al. Devolatilization model of large coal particles in moving bed[J]. Journal of Shanghai Jiao Tong University, 2001, 35(5): 733-736. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT200105023.htm
    [10] 彭扬凡, 陈姗姗, 孙粉锦, 等. 基于热重法的大颗粒煤热解反应动力学[J]. 洁净煤技术, 2021, 27(6): 128-133. https://www.cnki.com.cn/Article/CJFDTOTAL-JJMS202106013.htm

    Peng Yangfan, Chen Shanshan, Sun Fenjin, et al. Investigation on the kinetics of pyrolysis reaction of large coal particles based on TGA[J]. Clean Coal Technology, 2021, 27(6): 128-133. https://www.cnki.com.cn/Article/CJFDTOTAL-JJMS202106013.htm
    [11] 张盛诚, 何榕. 单颗粒煤粉热解时焦油的二次反应和扩散[J]. 清华大学学报: 自然科学版, 2016, 56(6): 605-610. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201606007.htm

    Zhang Shengcheng, He Rong. Secondary reactions and diffusion of tar during single coal particle pyrolysis[J]. Journal of Tsinghua University: Science and Technology, 2016, 56(6): 605-610. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201606007.htm
    [12] Sadhukhan A K, Gupta P, Saha R K. Modeling and experimental investigations on the pyrolysis of large coal particles[J]. Energy & Fuels, 2011, 25(12): 5573-5583.
    [13] 张秀霞, 吕晓雪, 肖美华, 等. 典型烟煤热解机理的反应动力学模拟[J]. 燃料化学学报, 2020, 48(9): 1035-1046. https://www.cnki.com.cn/Article/CJFDTOTAL-RLHX202009002.htm

    Zhang Xiuxia, Lü Xiaoxue, Xiao Meihua, et al. Molecular reaction dynamics simulation of pyrolysis mechanism of typical bituminous coal via ReaxFF[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1035-1046. https://www.cnki.com.cn/Article/CJFDTOTAL-RLHX202009002.htm
    [14] 孙蕊, 马高峰, 马国帅, 等. 贫瘦煤模拟海水催化热解特性的研究[J]. 矿业科学学报, 2020, 5(1): 115-121. http://kykxxb.cumtb.edu.cn/article/id/271

    Sun Rui, Ma Gaofeng, Ma Guoshuai, et al. Catalytic pyrolysis characteristics of simulated seawater in lean coal[J]. Journal of Mining Science and Technology, 2020, 5(1): 115-121. http://kykxxb.cumtb.edu.cn/article/id/271
    [15] 傅维镳. 煤燃烧理论及其宏观通用规律[M]. 北京: 清华大学出版社, 2003.
    [16] 薛爱军, 潘继红, 田茂诚, 等. 单个生物质炭颗粒气化过程的数值模拟[J]. 太阳能学报, 2016, 37(5): 1282-1289. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201605029.htm

    Xue Aijun, Pan Jihong, Tian Maocheng, et al. Numerical simulation of gasification of single charcoal particle in reduction zone[J]. Acta Energiae Solaris Sinica, 2016, 37(5): 1282-1289. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201605029.htm
    [17] Du Z Y, Sarofim A F, Longwell J P. Activation energy distribution in temperature-programmed desorption: modeling and application to the soot oxygen system[J]. Energy & Fuels, 1990, 4(3): 296-302.
    [18] Anthony D B, Howard J B, Hottel H C, et al. Rapid devolatilization and hydrogasification of bituminous coal[J]. Fuel, 1976, 55(2): 121-128.
    [19] Donskoi E, McElwain D L S. Approximate modelling of coal pyrolysis[J]. Fuel, 1999, 78(7): 825-835.
    [20] 刘旭光. 煤热解DAEM模型分析及固定床煤加压气化过程数学模拟[D]. 太原: 中国科学院山西煤炭化学研究所, 2000.
    [21] Sadhukhan A K, Gupta P, Saha R K. Modeling and experimental studies on single particle coal devolatilization and residual char combustion in fluidized bed[J]. Fuel, 2011, 90(6): 2132-2141.
    [22] 胡国新, 田伟学, 许伟, 等. 大颗粒煤在移动床中的热解模型[J]. 上海交通大学学报, 2001, 35(5): 733-736. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT200105023.htm

    Hu Guoxin, Tian Weixue, Xu Wei, et al. Devolatiliz-ation model of large coal particles in moving bed[J]. Journal of Shanghai Jiao Tong University, 2001, 35(5): 733-736. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT200105023.htm
    [23] 霍海龙, 李钦晔, 周文宁, 等. 鲁奇炉干馏段内大颗粒煤的热解特性研究[J]. 煤炭学报, 2019, 44(S2): 665-672. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2019S2030.htm

    Huo Hailong, Li Qinye, Zhou Wenning, et al. Pyrolysis analysis of large coal particle in dry distillation section of Lurgi gasifier[J]. Journal of China Coal Society, 2019, 44(S2): 665-672. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2019S2030.htm
    [24] 迟金玲, 李柯颖, 毛隆干, 等. 基于输运床的内在碳捕集气化制氢反应器操作条件研究[J]. 矿业科学学报, 2021, 6(2): 210-217. doi: 10.19606/j.cnki.jmst.2021.02.009

    Chi Jinling, Li Keying, Mao Longgan, et al. Study on operation condition of an in situ carbon capture gasification based on transport reactor[J]. Journal of Mining Science and Technology, 2021, 6(2): 210-217. doi: 10.19606/j.cnki.jmst.2021.02.009
    [25] 王俊杰, 欧丹林, 刘小蒙, 等. 水泥回转窑燃烧及传热的一维数学模型[J]. 武汉理工大学学报, 2017, 39(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201704001.htm

    Wang Junjie, Ou Danlin, Liu Xiaomeng, et al. Combustion and heat transfer simulation of rotary cement kiln using a one-dimensional model[J]. Journal of Wuhan University of Technology, 2017, 39(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201704001.htm
    [26] 杜冠洲. 大颗粒煤热解燃烧规律及包覆层消烟作用的研究[D]. 济南: 山东工业大学, 1990.
    [27] 袁理明. 流化床中大颗粒煤热解规律的研究[D]. 合肥: 中国科学技术大学, 1989.
    [28] 刘训良, 曹欢, 王淦, 等. 煤颗粒热解的传热传质分析[J]. 计算物理, 2014, 31(1): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL201401008.htm

    Liu Xunliang, Cao Huan, Wang Gan, et al. Numerical analysis of heat and mass transfer during pyrolysis of coal particle[J]. Chinese Journal of Computational Physics, 2014, 31(1): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL201401008.htm
    [29] 解强, 梁鼎成, 何璐, 等. TG-DSC测定煤热解反应热过程中确定基线热流的技术方法[J]. 矿业科学学报, 2017, 2(1): 82-89. http://kykxxb.cumtb.edu.cn/article/id/51

    Xie Qiang, Liang Dingcheng, He Lu, et al. Method of determining baseline heat flow in measurement of coal pyrolysis reaction heat by TG-DSC[J]. Journal of Mining Science and Technology, 2017, 2(1): 82-89. http://kykxxb.cumtb.edu.cn/article/id/51
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  272
  • HTML全文浏览量:  94
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-26
  • 修回日期:  2022-09-15
  • 刊出日期:  2023-03-30

目录

    /

    返回文章
    返回