留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

桦甸油页岩和废轮胎的共热解反应行为及协同效应

畅志兵 王楚楚 王依宁 王新红 旷文昊 初茉

畅志兵, 王楚楚, 王依宁, 王新红, 旷文昊, 初茉. 桦甸油页岩和废轮胎的共热解反应行为及协同效应[J]. 矿业科学学报, 2023, 8(2): 213-221. doi: 10.19606/j.cnki.jmst.2023.02.008
引用本文: 畅志兵, 王楚楚, 王依宁, 王新红, 旷文昊, 初茉. 桦甸油页岩和废轮胎的共热解反应行为及协同效应[J]. 矿业科学学报, 2023, 8(2): 213-221. doi: 10.19606/j.cnki.jmst.2023.02.008
Chang Zhibing, Wang Chuchu, Wang Yining, Wang Xinhong, Kuang Wenhao, Chu Mo. Reaction behaviors and synergistic effects for co-pyrolysis of Huadian oil shale and waste tire[J]. Journal of Mining Science and Technology, 2023, 8(2): 213-221. doi: 10.19606/j.cnki.jmst.2023.02.008
Citation: Chang Zhibing, Wang Chuchu, Wang Yining, Wang Xinhong, Kuang Wenhao, Chu Mo. Reaction behaviors and synergistic effects for co-pyrolysis of Huadian oil shale and waste tire[J]. Journal of Mining Science and Technology, 2023, 8(2): 213-221. doi: 10.19606/j.cnki.jmst.2023.02.008

桦甸油页岩和废轮胎的共热解反应行为及协同效应

doi: 10.19606/j.cnki.jmst.2023.02.008
基金项目: 

中央高校基本科研业务费专项资金 2020XJHH03

中国矿业大学(北京)大学生创新训练 202103027

详细信息
    作者简介:

    畅志兵(1988—),男,山西晋城人,博士,讲师,主要从事油页岩、低阶煤的热化学转化等方面的研究工作。Tel:15313736356,E-mail:achang515551103@163.com

  • 中图分类号: TQ534

Reaction behaviors and synergistic effects for co-pyrolysis of Huadian oil shale and waste tire

  • 摘要: 为了提高油页岩热解制油的效率和半焦的利用价值,将桦甸油页岩和废轮胎共热解,采用热重分析仪和铝甑反应器考察共热解的失重行为、产物产率和组成性质,基于实验值和计算值的差异分析协同效应。结果表明,共热解可以促进挥发分的释放,500 ℃时实际失重量比计算值高,当废轮胎占比为80 % 时二者差值为2.86 %; 共热解过程存在“增油减水”效应,废轮胎占比为50 % 时实际油产率为32.91 %,比计算值高约1.5 %,实际水产率比计算值低1.20 % ~1.77 %,同时使热解油中大于350 ℃的重质组分含量升高; 废轮胎热解的半焦发热量达30.43 MJ/kg,热解气中C1—C4烃类含量更高,使共热解半焦和热解气的热值高于油页岩热解。
  • 图  1  铝甑热解实验装置示意图

    1—质量流量计; 2—环式电阻炉; 3—铝甑; 4—热电偶; 5—锥形瓶; 6—冰水浴; 7—干燥管; 8—有机玻璃瓶; 9—U型管压力计; 10—水龙头

    Figure  1.  Aluminum retort pyrolysis apparatus

    图  2  油页岩和废轮胎的TG曲线及DTG曲线

    Figure  2.  TG and DTG curves of oil shale and waste tyre

    图  3  不同配比共热解的实际失重量与计算失重量

    Figure  3.  Actual and calculated weight losses for co-pyrolysis with different ratios

    图  4  油页岩与废轮胎共热解产物产率

    Figure  4.  Product yields for co-pyrolysis of oil shale and waste tire

    图  5  共热解产物产率的计算值与实验值

    Figure  5.  Calculated and experimental product yields for co-pyrolysis of oil shale and waste tyre

    图  6  热解油的1H NMR图谱

    Figure  6.  1H NMR spectra of the oil samples

    图  7  半焦的扫描电镜照片

    Figure  7.  SEM images of the char samples

    表  1  油页岩和废轮胎的工业分析及元素分析

    Table  1.   Proximate and ultimate analyses of oil shale and waste tyre  %

    样品 工业分析 元素分析(daf)
    Mad Ad Vd FCd C H N S O*
    油页岩 5.99 73.13 25.39 1.48 74.19 11.11 2.12 4.45 8.13
    废轮胎 0.94 14.71 59.13 26.16 80.76 8.76 0.91 2.65 6.92
    注:*为氧含量由差减法计算。
    下载: 导出CSV

    表  2  不同配比共热解实际失重量与计算失重量的差值

    Table  2.   Differences between actual and calculated weight losses for co-pyrolysis with different ratios

    废轮胎质量分数/% 失重量差值/%
    500 ℃ 900 ℃
    20 -0.03 0.25
    40 0.48 0.72
    50 1.07 0.98
    60 1.74 1.45
    80 2.86 2.45
    下载: 导出CSV

    表  3  热解油的元素分析和馏分组成

    Table  3.   Ultimate analysis and fraction composition of pyrolysis oil

    样品 元素分析/% H/C 馏分组成/%
    C H N S O <180 ℃ 180~350 ℃ >350 ℃
    页岩油 82.36 11.35 1.16 1.04 4.09 1.65 11.10 41.17 47.74
    轮胎油 81.13 10.21 0.76 0.84 7.06 1.51 9.97 45.19 44.84
    共热解油 81.37 10.15 0.83 0.92 6.73 1.50 9.94 39.32 50.74
    下载: 导出CSV

    表  4  热解油中氢原子的相对含量

    Table  4.   Hydrogens content in the oil samples

    化学位移/10-6 相对含量/%
    油页岩油 废轮胎油 共热解油
    6~10(芳氢) 6.30 10.07 8.68
    2~4.5(α-氢) 9.20 19.49 14.17
    1~2(β-氢) 69.62 52.51 57.66
    0.1~1(γ-氢) 14.89 17.93 19.49
    下载: 导出CSV

    表  5  油页岩和废轮胎热解气的组分产率

    Table  5.   Gas component yields for co-pyrolysis of oil shale and waste tire

    气体组分 气体组分产率/(mL·g-1)
    油页岩 废轮胎 共热解(实验值) 共热解(计算值)
    H2 8.76 4.45 8.80 6.61
    CO 1.27 0.96 1.49 1.12
    CO2 6.05 3.94 5.99 4.99
    CH4 3.20 5.82 4.85 4.51
    C2H6 1.34 2.26 1.90 1.80
    C2H4 0.55 1.65 1.03 1.10
    C3H8 0.56 1.22 0.95 0.89
    C3H6 0.74 0.94 0.93 0.84
    C4H10 0.26 0.63 0.46 0.44
    1-C4H8 0.08 0.32 0.30 0.20
    下载: 导出CSV

    表  6  共热解半焦的工业分析和发热量

    Table  6.   Proximate analysis and calorific value of co-pyrolysis semi-coke

    废轮胎质量分数/% 工业分析/% 发热量/ (MJ·kg-1)
    Mad Ad Vd FCd Qad
    0 0.00 86.19 10.91 2.90 4.36
    20 0.10 77.38 10.34 12.28 5.19
    40 0.32 67.70 8.60 23.70 9.55
    50 0.00 61.49 8.47 30.04 11.81
    60 0.31 54.78 7.74 37.48 15.86
    80 0.19 37.40 6.08 56.52 20.94
    100 0.27 11.24 3.50 85.26 30.43
    下载: 导出CSV
  • [1] 刘招君, 董清水, 叶松青, 等. 中国油页岩资源现状[J]. 吉林大学学报: 地球科学版, 2006, 36(6): 869-876. doi: 10.3321/j.issn:1671-5489.2006.06.005

    Liu Zhaojun, Dong Qingshui, Ye Songqing, et al. The situation of oil shale resources in China[J]. Journal of Jilin University: Earth Science Edition, 2006, 36(6): 869-876. doi: 10.3321/j.issn:1671-5489.2006.06.005
    [2] 柏静儒, 李梦迪, 邵佳晔, 等. 油页岩与木屑混合热解特性研究[J]. 东北电力大学学报, 2015, 35(4): 62-66. doi: 10.3969/j.issn.1005-2992.2015.04.011

    Bai Jingru, Li Mengdi, Shao Jiaye, et al. The co-pyrolysis characteristic of oil shale and sawdust[J]. Journal of Northeast Dianli University, 2015, 35(4): 62-66. doi: 10.3969/j.issn.1005-2992.2015.04.011
    [3] 柏静儒, 邵佳晔, 张宏喜, 等. 碱性木质素与油页岩共热解协同作用的TG-FTIR研究[J]. 太阳能学报, 2017, 38(6): 1533-1538. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201706011.htm

    Bai Jingru, Shao Jiaye, Zhang Hongxi, et al. Tg-ftir research of alkaline lignin and oil shale co-pyrolysis synergy action[J]. Acta Energiae Solaris Sinica, 2017, 38(6): 1533-1538. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201706011.htm
    [4] 翟英媚, 朱轶铭, 杨天华. 生物质与油页岩共热解研究进展[J]. 洁净煤技术, 2022, 28(6): 72-81. https://www.cnki.com.cn/Article/CJFDTOTAL-JJMS202206008.htm

    Zhai Yingmei, Zhu Yiming, Yang Tianhua. Research progress on co-pyrolysis of biomass and oil shale[J]. Clean Coal Technology, 2022, 28(6): 72-81. https://www.cnki.com.cn/Article/CJFDTOTAL-JJMS202206008.htm
    [5] 石勇, 赖登国, 陈兆辉, 等. 神木烟煤与桦甸油页岩的共热解特性[J]. 过程工程学报, 2016, 16(4): 634-638. https://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ201604015.htm

    Shi Yong, Lai Dengguo, Chen Zhaohui, et al. Co-pyrolysis characteristics of Shenmu bituminous coal and Huadian oil shale[J]. The Chinese Journal of Process Engineering, 2016, 16(4): 634-638. https://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ201604015.htm
    [6] Lu Y, Wang Y, Zhang J, et al. Investigation on the characteristics of pyrolysates during co-pyrolysis of Zhundong coal and Changji oil shale and its kinetics[J]. Energy, 2020, 200: 117529. doi: 10.1016/j.energy.2020.117529
    [7] 高景龙, 杨磊, 王立强. 抚顺油页岩/聚乙烯热解动力学机理研究[J]. 塑料科技, 2019, 47(10): 12-16. doi: 10.15925/j.cnki.issn1005-3360.2019.10.003

    Gao Jinglong, Yang Lei, Wang Liqiang. Research on kinetic analysis of Fushun oil shale/PE pyrolysis[J]. Plastics Science and Technology, 2019, 47(10): 12-16. doi: 10.15925/j.cnki.issn1005-3360.2019.10.003
    [8] Mu M, Han X X, Jiang X M. Interactions between oil shale and hydrogen-rich wastes during co-pyrolysis: 1. Co-pyrolysis of oil shale and polyolefins[J]. Fuel, 2020, 265: 116994. doi: 10.1016/j.fuel.2019.116994
    [9] 李年银, 王元, 陈飞, 等. 油页岩原位转化技术发展现状及展望[J]. 特种油气藏, 2022, 29(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202203001.htm

    Li Nianyin, Wang Yuan, Chen Fei, et al. Development status and prospects of in situ conversion technology in oil shale[J]. Special Oil & Gas Reservoirs, 2022, 29(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202203001.htm
    [10] 钱家麟, 王剑秋, 李术元. 世界油页岩资源利用和发展趋势[J]. 吉林大学学报: 地球科学版, 2006, 36(6): 877-887. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200606001.htm

    Qian Jialin, Wang Jianqiu, Li Shuyuan. World oil shale utilization and its future[J]. Journal of Jilin University: Earth Science Edition, 2006, 36(6): 877-887. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200606001.htm
    [11] Lai D G, Shi Y, Geng S L, et al. Secondary reactions in oil shale pyrolysis by solid heat carrier in a moving bed with internals[J]. Fuel, 2016, 173: 138-145. doi: 10.1016/j.fuel.2016.01.052
    [12] Chang Z B, Chu M, Zhang C, et al. Compositional and structural variations of bitumen and its interactions with mineral matters during Huadian oil shale pyrolysis[J]. Korean Journal of Chemical Engineering, 2017, 34(12): 3111-3118. doi: 10.1007/s11814-017-0207-x
    [13] 畅志兵, 初茉, 张超, 等. 颗粒粒径对油页岩热解产油率的影响[J]. 燃料化学学报, 2015, 43(6): 663-668. doi: 10.3969/j.issn.0253-2409.2015.06.004

    Chang Zhibing, Chu Mo, Zhang Chao, et al. Influence of particle size on oil yield from pyrolysis of oil shale[J]. Journal of Fuel Chemistry and Technology, 2015, 43(6): 663-668. doi: 10.3969/j.issn.0253-2409.2015.06.004
    [14] 梁鲲, 梁杰, 史龙玺, 等. 升温速率对桦甸油页岩热解特性及动力学的影响[J]. 矿业科学学报, 2018, 3(2): 194-200. http://kykxxb.cumtb.edu.cn/article/id/138

    Liang Kun, Liang Jie, Shi Longxi, et al. Effects of heating rate on the pyrolysis characteristics and kinetics of Huadian oil shale[J]. Journal of Mining Science and Technology, 2018, 3(2): 194-200. http://kykxxb.cumtb.edu.cn/article/id/138
    [15] 畅志兵, 初茉, 张超, 等. 酸洗脱矿对油页岩热解失重特性及动力学的影响[J]. 矿业科学学报, 2018, 3(3): 290-298. http://kykxxb.cumtb.edu.cn/article/id/150

    Chang Zhibing, Chu Mo, Zhang Chao, et al. Effect of demineralization on pyrolysis characteristics and kinetics of two Chinese oil shales[J]. Journal of Mining Science and Technology, 2018, 3(3): 290-298. http://kykxxb.cumtb.edu.cn/article/id/150
    [16] 刘兵权, 毛胜强, 欧阳任萍, 等. 两种不同类型废轮胎热分解特性及其溶胀性能[J]. 有色金属科学与工程, 2020, 11(2): 51-58.

    Liu Bingquan, Mao Shengqiang, Ouyang Renping, et al. Thermal decomposition characteristics and swelling performance of two kinds of scrapped tires[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 51-58.
    [17] Onay Ö. The catalytic co-pyrolysis of waste tires and pistachio seeds[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2014, 36(18): 2070-2077.
    [18] 周斌, 赵晓胜. 油页岩共价键分布及其加氢热解特征[J/OL]. 洁净煤技术(2021-11-23)[2022-05-19]. http://kns.cnki.net/kcms/detail/11.3676.TD.20211123.1034.002.html.
    [19] Onay O, Koca H. Determination of synergetic effect in co-pyrolysis of lignite and waste tyre[J]. Fuel, 2015, 150: 169-174.
    [20] Abnisa F, Wan Daud W M A. Optimization of fuel recovery through the stepwise co-pyrolysis of palm shell and scrap tire[J]. Energy Conversion and Management, 2015, 99: 334-345.
    [21] 王擎, 崔达, 迟铭书, 等. 利用GC-MS与NMR技术研究干馏终温对桦甸页岩油组成性质的影响[J]. 化工学报, 2015, 66(7): 2670-2677. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201507042.htm

    Wang Qing, Cui Da, Chi Mingshu, et al. Influence of final retorting temperature on composition and property of Huadian shale oil[J]. CIESC Journal, 2015, 66(7): 2670-2677. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201507042.htm
    [22] 王慧, 邹滢, 余锋, 等. 废轮胎热解油的化学组成分布[J]. 化工进展, 2011, 30(3): 656-661. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201103041.htm

    Wang Hui, Zou Ying, Yu Feng, et al. Distributions of chemical components in used tire pyrolysis oil[J]. Chemical Industry and Engineering Progress, 2011, 30(3): 656-661. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201103041.htm
    [23] Burnham A K. Chemistry of shale oil cracking: Oil Shale, Tar Sands, and Related Materials[C]. Washington DC: American Chemical Society, 1981.
    [24] Campbell J H, Koskinas G H, Stout N D. Kinetics of oil generation from Colorado oil shale[J]. Fuel, 1978, 57(6): 372-376.
    [25] 杨丽庆, 黄少凯, 田松柏, 等. 采用核磁共振方法表征重质油结构[J]. 石油学报: 石油加工, 2016, 32(5): 1038-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJG201605023.htm

    Yang Liqing, Huang Shaokai, Tian Songbai, et al. Analysis for chemical structure of heavy crude oil by NMR[J]. Acta Petrolei Sinica: Petroleum Processing Section, 2016, 32(5): 1038-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJG201605023.htm
    [26] Tong J H, Han X X, Wang S, et al. Evaluation of structural characteristics of Huadian oil shale kerogen using direct techniques(solid-state 13C NMR, XPS, FT-IR, and XRD)[J]. Energy & Fuels, 2011, 25(9): 4006-4013.
    [27] Grioui N, Halouani K, Agblevor F A. Assessment of upgrading ability and limitations of slow co-pyrolysis: case of olive mill wastewater sludge/waste tires slow co-pyrolysis[J]. Waste Management, 2019, 92: 75-88.
    [28] He L, Ma Y, Yue C T, et al. Kinetic modeling of Kukersite oil shale pyrolysis with thermal bitumen as an intermediate[J]. Fuel, 2020, 279: 118371.
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  166
  • HTML全文浏览量:  74
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-05
  • 修回日期:  2022-08-08
  • 刊出日期:  2023-03-30

目录

    /

    返回文章
    返回