留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度卷积神经网络和LBP算法的浮选工况识别

蒋小平 刘俊威 王乐乐 雷震彬 胡明振

蒋小平, 刘俊威, 王乐乐, 雷震彬, 胡明振. 基于多尺度卷积神经网络和LBP算法的浮选工况识别[J]. 矿业科学学报, 2023, 8(2): 202-212. doi: 10.19606/j.cnki.jmst.2023.02.007
引用本文: 蒋小平, 刘俊威, 王乐乐, 雷震彬, 胡明振. 基于多尺度卷积神经网络和LBP算法的浮选工况识别[J]. 矿业科学学报, 2023, 8(2): 202-212. doi: 10.19606/j.cnki.jmst.2023.02.007
Jiang Xiaoping, Liu Junwei, Wang Lele, Lei Zhenbin, Hu Mingzhen. Flotation condition recognition based on multi-scale convolutional neural network and LBP algorithm[J]. Journal of Mining Science and Technology, 2023, 8(2): 202-212. doi: 10.19606/j.cnki.jmst.2023.02.007
Citation: Jiang Xiaoping, Liu Junwei, Wang Lele, Lei Zhenbin, Hu Mingzhen. Flotation condition recognition based on multi-scale convolutional neural network and LBP algorithm[J]. Journal of Mining Science and Technology, 2023, 8(2): 202-212. doi: 10.19606/j.cnki.jmst.2023.02.007

基于多尺度卷积神经网络和LBP算法的浮选工况识别

doi: 10.19606/j.cnki.jmst.2023.02.007
详细信息
    作者简介:

    蒋小平(1966—),男,北京人,副教授,硕士生导师,主要从事自动控制理论与应用等方面的教学与研究工作。Tel:13901324565,E-mail:jiangxiaoping@cumtb.edu.cn

  • 中图分类号: TD982;TD981

Flotation condition recognition based on multi-scale convolutional neural network and LBP algorithm

  • 摘要: 针对泡沫浮选加药状态检测困难、识别效率低和主观性强等问题,提出了一种结合多尺度卷积神经网络(CNN)特征及改进局部二值模式(LBP)计算方法的核随机权神经网络(K-RVFLNs)浮选工况识别方法。首先,对泡沫浮选图像进行非下采样Shearlet多尺度分解,将原始图像分解为不同频率尺度,设计多通道CNN网络对多尺度图像进行特征提取; 再通过改进LBP算法提取特征作为补充,将CNN提取的图像特征与LBP特征进行融合; 最后,通过核随机权神经网络映射到更高维空间进行分类决策,实现浮选加药状态的精确识别。实验结果表明,采用多尺度CNN及LBP-TOP特征融合的方法识别的精度比传统LBP算法提高了5.34 %,比采用单CNN特征的方法提高了3.76 %,结合K-RVFLNs实现浮选工况分类准确率高达96.38 %,识别精度和稳定性较现有方法有较大提升,且减少了人工干预,有利于提高生产效率。
  • 图  1  6类工况的泡沫图像

    Figure  1.  Foam images of six working conditions

    图  2  气泡图像的3级NSST多尺度分解

    Figure  2.  3-stage NSST multiscale decomposition of bubble image

    图  3  气泡图像三维显示

    Figure  3.  Bubble image 3D display diagram

    图  4  NSST-CNN网络特征提取模型

    Figure  4.  NSST-CNN network feature extraction model

    图  5  三正交平面示意图

    Figure  5.  Schematic diagram of three orthogonal planes

    图  6  各平面圆形邻域

    Figure  6.  Each plane circular neighborhood

    图  7  LBP-TOP特征提取示意图

    Figure  7.  Schematic diagram of LBP-TOP feature extraction

    图  8  深度双隐层自编码核随机权神经网络

    Figure  8.  Deep double hidden layer self-encoded kernel random-weight neural network

    图  9  结合CNN和LBP特征的K-RVFLNs工况识别模型

    Figure  9.  K-RVFLNs condition recognition model combining CNN and LBP features

    图  10  不同LBP参数下识别准确率

    Figure  10.  Recognition accuracy under different LBP parameters

    图  11  不同取值的处理效果

    Figure  11.  The processing effect of different values

    图  12  LBP-TOP纹理特征

    Figure  12.  LBP-TOP texture feature diagram

    图  13  CNN特征可视化结果

    Figure  13.  Visualization results of CNN features

    图  14  损失函数曲线

    Figure  14.  Curve of loss function

    图  15  3种模式工况识别结果

    Figure  15.  Performance recognition results of three modes

    表  1  不同方法的识别效果

    Table  1.   Recognition effect of different methods

    类别 特征提取方法 分类算法 运行时间/s 准确率/%
    方法1 气泡大小和形状的联合分布 最小二乘分类 1.053 85.62
    方法2 泡沫大小分布、灰度特征、纹理特征 支持向量机 1.851 84.61
    方法3 泡沫纹理特征 自适应权重支持向量机 2.158 89.78
    方法4 K均值聚类 3.614 93.21
    方法5 双模态特征提取 随机权神经网络 2.892 95.98
    方法6 Alexnet网络迁移学习 随机森林 2.023 93.41
    方法7 轻量型卷积神经网络模块 多层感知器 2.821 93.56
    本文方法 NSST-CNN特征+LBP-TOP特征 核随机权神经网络 3.028 96.38
    下载: 导出CSV
  • [1] Zhang J, Tang Z H, Ai M X, et al. Nonlinear modeling of the relationship between reagent dosage and flotation froth surface image by Hammerstein-Wiener model[J]. Minerals Engineering, 2018, 120: 19-28. doi: 10.1016/j.mineng.2018.01.018
    [2] 黄凌霄, 廖一鹏. 浮选气泡NSCT域多尺度等效形态特征提取及识别[J]. 光学精密工程, 2020, 28(3): 704-716. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202003021.htm

    Huang Lingxiao, Liao Yipeng. Recognition and multiscale equivalent morphological features extraction of flotation bubbles in NSCT domain[J]. Optics and Precision Engineering, 2020, 28(3): 704-716. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202003021.htm
    [3] 姚群力, 胡显, 雷宏. 基于多尺度卷积神经网络的遥感目标检测研究[J]. 光学学报, 2019, 39(11): 346-353. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201911042.htm

    Yao Qunli, Hu Xian, Lei Hong. Object detection in remote sensing images using multiscale convolutional neural networks[J]. Acta Optica Sinica, 2019, 39(11): 346-353. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201911042.htm
    [4] Fu Y H, Aldrich C. Froth image analysis by use of transfer learning and convolutional neural networks[J]. Minerals Engineering, 2018, 115: 68-78. doi: 10.1016/j.mineng.2017.10.005
    [5] Fu Y, Aldrich C. Flotation froth image recognition with convolutional neural networks[J]. Minerals Engineering, 2019, 132: 183-190. doi: 10.1016/j.mineng.2018.12.011
    [6] Morar S H, Bradshaw D J, Harris M C. The use of the froth surface lamellae burst rate as a flotation froth stability measurement[J]. Minerals Engineering, 2012, 36/37/38: 152-159.
    [7] Wang X L, Chen S, Yang C H, et al. Process working condition recognition based on the fusion of morphological and pixel set features of froth for froth flotation[J]. Minerals Engineering, 2019, 128: 17-26.
    [8] 廖一鹏, 杨洁洁, 王志刚, 等. 基于双模态卷积神经网络自适应迁移学习的浮选工况识别[J]. 光子学报, 2020, 49(10): 173-184. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202010020.htm

    Liao Yipeng, Yang Jiejie, Wang Zhigang, et al. Flotation performance recognition based on dual-modality convolutional neural network adaptive transfer learning[J]. Acta Photonica Sinica, 2020, 49(10): 173-184. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202010020.htm
    [9] Li Z M, Gui W H, Zhu J Y. Fault detection in flotation processes based on deep learning and support vector machine[J]. Journal of Central South University, 2019, 26(9): 2504-2515. doi: 10.1007/s11771-019-4190-8
    [10] 陈奕霏, 蔡耀仪, 李诗文. 基于轻量型卷积视觉Transformer的锑浮选工况识别[J]. 激光与电子学科进展, 2023, 60(6): 0615002.

    Chen Yifei, Cai Yaoyi, Li Shiwen, et al. Working condition recongnition using lightweight convolution vision transformer network for antimony flotation process[J]. Laser & Optoelectronics Progress, 2023, 60(6): 0615002.
    [11] Labate D, Lim W Q, Kutyniok G, et al. Sparse multidimensional representation using shearlets[C]//Optics and Photonics 2005. Proc SPIE 5914, Wavelets XI, San Diego, California, USA. 2005, 5914: 254-262.
    [12] Easley G, Labate D, Lim W Q. Sparse directional image representations using the discrete shearlet transform[J]. Applied and Computational Harmonic Analysis, 2008, 25(1): 25-46. doi: 10.1016/j.acha.2007.09.003
    [13] Liu X B, Mei W B, Du H Q, et al. A novel image fusion algorithm based on nonsubsampled shearlet transform and morphological component analysis[J]. Signal, Image and Video Processing, 2016, 10(5): 959-966.
    [14] Shahdoosti H R, Khayat O. Image denoising using sparse representation classification and non-subsampled shearlet transform[J]. Signal, Image and Video Processing, 2016, 10(6): 1081-1087.
    [15] Wu J A, Guo R, Liu R Z, et al. Convolutional neural network target recognition for missile-borne linear array LiDAR[J]. Acta Photonica Sinica, 2019, 48(7): 701002.
    [16] Liu S, Qi L, Qin H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 8759-8768.
    [17] Rezatofighi H, Tsoi N, Gwak J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach, CA, USA: IEEE, 2019: 658-666.
    [18] Zheng Z H, Wang P, Liu W, et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
    [19] 余益团. 基于LBP-top特征的新生儿疼痛表情识别研究[D]. 南京: 南京邮电大学, 2016.
    [20] Zhao G Y, Pietikäinen M. Dynamic texture recognition using local binary patterns with an application to facial expressions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 915-928.
    [21] 赵突. 基于视频的人脸微表情识别关键技术研究[D]. 南京: 东南大学, 2018.
    [22] 李强. 基于视频的微表情检测与识别技术研究[D]. 南京: 东南大学, 2017.
    [23] 郭承玉. 人脸自发微表情识别方法研究[D]. 长沙: 国防科技大学, 2019.
    [24] 余益团. 基于LBP-top特征的新生儿疼痛表情识别研究[D]. 南京: 南京邮电大学, 2016.
    [25] Pao Y H, Takefuji Y. Functional-link net computing: theory, system architecture, and functionalities[J]. Computer, 1992, 25(5): 76-79.
    [26] Huang G B. An insight into extreme learning machines: random neurons, random features and kernels[J]. Cognitive Computation, 2014, 6(3): 376-390.
    [27] Sinha A, Soun T, Deb K. Using Karush-Kuhn-Tucker proximity measure for solving bilevel optimization problems[J]. Swarm and Evolutionary Computation, 2019, 44: 496-510.
    [28] Kim J, Lee B. Identification of Alzheimer's disease and mild cognitive impairment using multimodal sparse hierarchical extreme learning machine[J]. Human Brain Mapping, 2018, 39(9): 3728-3741.
    [29] 廖一鹏, 张进, 王志刚, 等. 结合双模多尺度CNN特征及自适应深度KELM的浮选工况识别[J]. 光学精密工程, 2020, 28(8): 1785-1798. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202008018.htm

    Liao Yipeng, Zhang Jin, Wang Zhigang, et al. Flotation performance recognition based on dual-modality multiscale CNN features and adaptive deep learning KELM[J]. Optics and Precision Engineering, 2020, 28(8): 1785-1798. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202008018.htm
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  107
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-03
  • 修回日期:  2022-09-25
  • 刊出日期:  2023-03-30

目录

    /

    返回文章
    返回