留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同长径比煤样动力学特征及本构模型

解北京 栾铮 陈冬新 钟诗晴

解北京, 栾铮, 陈冬新, 钟诗晴. 不同长径比煤样动力学特征及本构模型[J]. 矿业科学学报, 2023, 8(2): 190-201. doi: 10.19606/j.cnki.jmst.2023.02.006
引用本文: 解北京, 栾铮, 陈冬新, 钟诗晴. 不同长径比煤样动力学特征及本构模型[J]. 矿业科学学报, 2023, 8(2): 190-201. doi: 10.19606/j.cnki.jmst.2023.02.006
Xie Beijing, Luan Zheng, Chen Dongxin, Zhong Shiqing. Dynamic characteristics and constitutive model of coal samples with different length diameter ratio[J]. Journal of Mining Science and Technology, 2023, 8(2): 190-201. doi: 10.19606/j.cnki.jmst.2023.02.006
Citation: Xie Beijing, Luan Zheng, Chen Dongxin, Zhong Shiqing. Dynamic characteristics and constitutive model of coal samples with different length diameter ratio[J]. Journal of Mining Science and Technology, 2023, 8(2): 190-201. doi: 10.19606/j.cnki.jmst.2023.02.006

不同长径比煤样动力学特征及本构模型

doi: 10.19606/j.cnki.jmst.2023.02.006
基金项目: 

国家重点研发计划 2019YFC0810800

国家自然科学基金青年基金 51404277

中央高校基本科研业务费专项资金 2022YJSAQ15

详细信息
    作者简介:

    解北京(1984—),男,安徽滁州人,博士,副教授,主要从事矿井瓦斯灾害防治、煤岩动力灾害防治等方面的研究工作。Tel:15201290493,E-mail:bjxie1984@cumtb.edu.cn

  • 中图分类号: TD315

Dynamic characteristics and constitutive model of coal samples with different length diameter ratio

  • 摘要: 为研究冲击荷载下不同长径比煤样的动力学性能,借助改进的霍普金森压杆实验装置(ϕ75 mm),开展6个冲击等级(4.18~8.03 m/s)、4种长径比(0.33~1.33)下的冲击压缩实验,并结合灰色关联理论分析动力学参数与长径比之间的关联性,建立基于力学机制、Weibull分布、D-P准则的4参数单轴煤岩强度型统计损伤模型。研究表明:①煤样长径比与应变率、动抗压强度、耗散能均呈二次函数关系,且耗散能随长径比增加而降低; 与电磁能呈一次函数关系,且保持正相关。②煤样长径比对动力学参数的影响排序为:电磁能(0.88)>动抗压强度(0.84)>耗散能(0.81)>应变率(0.78)。③基于Weibull分布、D-P准则构建初始本构模型,并借助动抗压强度σmax与应变率、长径比n的关系修正,进而对比实验应力-应变曲线,验证模型可靠性(R2>0.91)。
  • 图  1  原煤试样加工及成品

    Figure  1.  Raw coal sample processing and finished products

    图  2  SHPB实验系统

    Figure  2.  SHPB experimental system

    图  3  煤样应力平衡曲线

    Figure  3.  Stress balance curve of coal sample

    图  4  典型应变率时程曲线

    Figure  4.  Typical strain rate time history curve

    图  5  应变率与煤样长径比关系

    Figure  5.  Relationship between strain rate and length diameter ratio of coal sample

    图  6  应力-应变曲线

    Figure  6.  Curve of stress and strain

    图  7  煤样动抗压强度与应变率关系

    Figure  7.  Relationship between compressive strength and strain rate of coal sample

    图  8  动抗压强度与煤样长径比关系

    Figure  8.  Relationship between compressive strength and length diameter ratio of coal sample

    图  9  CM1煤样破坏电磁信号降噪前后对比

    Figure  9.  Comparison of electromagnetic signal of CM1 coal

    图  10  应变率-耗散能关系曲线

    Figure  10.  Relationship curve between strain rate and dissipation energy

    图  11  长径比-耗散能关系曲线

    Figure  11.  Relationship curve between length diameter ratio and dissipated energy

    图  12  应变率-电磁辐射能关系曲线

    Figure  12.  Strain rate electromagnetic radiation energy relation curve

    图  13  长径比-电磁辐射能关系曲线

    Figure  13.  Relationship curve between length diameter ratio and electromagnetic radiation energy

    图  14  煤样动抗压强度的3D曲面

    Figure  14.  3D curved surface of dynamic compressive strength of coal sample

    图  15  煤样实验和理论应力-应变曲线

    Figure  15.  Coal sample test and theoretical stress-strain curve

    表  1  煤样基础物理力学参数

    Table  1.   Fundamental physical and mechanical parameters of coal sample

    密度/ (kg·m-3) 静态抗压强度/ MPa 弹性模量/ GPa 泊松比 孔隙率/%
    1 307.10 18.39 0.89 0.43 2.54
    下载: 导出CSV

    表  2  SHPB冲击破坏实验数据统计

    Table  2.   Data of SHPB impact damage experiment

    直径×高度/ (mm×mm) 编号 速度/ (m·s-1) 应变率$ \overline{\dot{\varepsilon}}$ /s-1 动抗压强度σmax/MPa 耗散能/J 辐射能/J 直径×高度/ (mm×mm) 编号 速度/ (m·s-1) 应变率$ \overline{\dot{\varepsilon}}$/s-1 动抗压强度σmax/MPa 耗散能/J 辐射能/J
    75×25 CM1 5.06 120.04 22.45 3.65 0.08 75×75 MM1 4.63 103.62 7.06 2.21 0.46
    CM2 5.64 136.51 12.62 7.45 0.19 MM2 5.58 123.86 11.35 3.29 0.63
    CM3 6.32 146.01 35.82 9.19 0.15 MM3 6.00 139.03 12.97 5.55 0.97
    CM4 6.86 159.39 34.38 12.57 0.31 MM4 6.54 149.244 13.97 6.61 0.93
    CM5 7.47 177.79 32.92 13.36 0.56 MM5 7.40 169.07 15.27 7.16 1.18
    CM6 7.78 182.29 43.14 14.08 0.63 MM6 8.03 176.79 20.37 9.34 1.65
    75×50 ZM1 4.18 98.26 6.18 1.44 0.23 75×100 LM1 4.71 109.26 9.42 0.49 0.70
    ZM2 5.25 122.50 11.00 2.04 0.43 LM2 5.69 125.68 11.82 2.59 0.78
    ZM3 6.18 145.31 13.93 2.71 0.61 LM3 6.26 140.35 13.57 4.26 1.01
    ZM4 6.76 155.58 16.89 5.95 0.87 LM4 6.84 152.81 14.12 4.37 1.08
    ZM5 7.22 173.40 23.41 9.34 1.07 LM5 7.50 172.44 16.41 6.44 1.27
    ZM6 7.61 180.04 26.32 9.42 1.24 LM6 7.90 180.98 18.07 8.25 1.38
    下载: 导出CSV

    表  3  动抗压强度拟合结果

    Table  3.   Fitting results of dynamic compressive strength

    长径比 应变率拟合 R2 应变率/s-1 长径比拟合 R2
    a -b a -b c
    0.33 0.42 34.73 0.88 100 9.12 13.65 10.89 0.91
    0.67 0.24 18.44 0.95 120 15.52 30.36 24.12 0.84
    1.00 0.15 8.40 0.91 140 21.91 47.07 37.35 0.99
    1.33 0.11 2.61 0.98 160 28.31 63.78 50.57 0.99
    180 34.71 80.50 63.80 0.98
    200 41.11 97.22 77.03 0.98
    下载: 导出CSV

    表  4  应变率-耗散能拟合结果

    Table  4.   Fitting results of strain rate and dissipation energy

    长径比 应变率拟合 R2
    a b
    0.33 0.16 -15.02 0.95
    0.67 0.11 -10.53 0.85
    1.00 0.10 -9.72 0.97
    1.33 0.09 -7.60 0.95
    下载: 导出CSV

    表  5  长径比-耗散能拟合结果

    Table  5.   Fitting results of length diameter ratio and dissipation energy

    应变率/s-1 长径比拟合 R2
    a b c
    100 -1.12 0.37 1.45 0.72
    120 1.54 -5.17 6.14 0.98
    140 4.21 -10.71 10.84 0.99
    160 6.87 -16.25 15.53 0.96
    180 9.53 -21.79 20.22 0.94
    200 12.19 -27.33 24.92 0.92
    下载: 导出CSV

    表  6  应变率-电磁辐射能拟合结果

    Table  6.   Fitting results of strain rate and electromagnetic radiation energy

    长径比 应变率拟合 R2
    a b
    0.33 0.009 -1.06 0.92
    0.67 0.012 -1.04 0.96
    1.00 0.011 -0.73 0.97
    1.33 0.010 -0.38 0.99
    下载: 导出CSV

    表  7  长径比-电磁辐射能拟合结果

    Table  7.   Fitting results of length diameter ratio and electromagnetic radiation energy

    应变率/s-1 长径比拟合 R2
    a b
    100 0.56 -0.16 0.99
    120 0.53 0.08 0.99
    140 0.51 0.33 0.98
    160 0.48 0.57 0.95
    180 0.45 0.85 0.91
    200 0.42 1.06 0.84
    下载: 导出CSV

    表  8  灰色综合关联结果

    Table  8.   Grey comprehensive correlation results

    比较序列 综合关联度
    应变率 0.78
    动抗压强度 0.84
    耗散能 0.81
    电磁能 0.88
    下载: 导出CSV

    表  9  本构模型拟合参数

    Table  9.   Fitting parameters of constitutive model

    编号 n $ \dot{\varepsilon}$/s-1 E/GPa εm/‰ R2
    CM6 0.33 182.29 37.11 7.05 0.95
    ZM6 0.67 180.04 6.20 13.01 0.93
    MM6 1.00 176.79 25.00 5.40 0.91
    LM6 1.33 180.98 9.50 5.63 0.99
    下载: 导出CSV
  • [1] 王恩元, 张国锐, 张超林, 等. 我国煤与瓦斯突出防治理论技术研究进展与展望[J]. 煤炭学报, 2022, 47(1): 297-322. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202201021.htm

    Wang Enyuan, Zhang Guorui, Zhang Chaolin, et al. Research progress and prospect on theory and technology for coal and gas outburst control and protection in China[J]. Journal of China Coal Society, 2022, 47(1): 297-322. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202201021.htm
    [2] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(5): 1283-1305. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201905002.htm

    Xie Heping. Research review of the state key research development program of China: deep rock mechanics and mining theory[J]. Journal of China Coal Society, 2019, 44(5): 1283-1305. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201905002.htm
    [3] 何学秋, 窦林名, 牟宗龙, 等. 煤岩冲击动力灾害连续监测预警理论与技术[J]. 煤炭学报, 2014, 39(8): 1485-1491. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408016.htm

    He Xueqiu, Dou Linming, Mu Zonglong, et al. Continuous monitoring and warning theory and technology of rock burst dynamic disaster of coal[J]. Journal of China Coal Society, 2014, 39(8): 1485-1491. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408016.htm
    [4] 洪亮. 冲击荷载下岩石强度及破碎能耗特征的尺寸效应研究[D]. 长沙: 中南大学, 2008.
    [5] 洪亮, 李夕兵, 马春德, 等. 岩石动态强度及其应变率灵敏性的尺寸效应研究[J]. 岩石力学与工程学报, 2008, 27(3): 526-533. doi: 10.3321/j.issn:1000-6915.2008.03.012

    Hong Liang, Li Xibing, Ma Chunde, et al. Study on size effect of rock dynamic strength and strain rate sensitivity[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3): 526-533. doi: 10.3321/j.issn:1000-6915.2008.03.012
    [6] 孙卓越, 吴拥政, 孙久政, 等. 三维动静加载下煤样动态变形模量长径比效应[J]. 采矿与岩层控制工程学报, 2022, 4(4): 67-77. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC202204005.htm

    Sun Zhuoyue, Wu Yongzheng, Sun Jiuzheng, et al. Length-to-diameter ratio effect of dynamic deformation modulus of coal samples under three-dimensional dynamic and static loading[J]. Journal of Mining and Strata Control Engineering, 2022, 4(4): 67-77. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC202204005.htm
    [7] 吴拥政, 孙卓越, 付玉凯. 三维动静加载下不同长径比煤样力学特性及能量耗散规律[J]. 岩石力学与工程学报, 2022, 41(5): 877-888. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202205002.htm

    Wu Yongzheng, Sun Zhuoyue, Fu Yukai. Mechanical properties and energy dissipation laws of coal samples with different length-to-diameter ratios under 3D coupled static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(5): 877-888. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202205002.htm
    [8] 王磊, 袁秋鹏, 谢广祥, 等. 冲击载荷下煤样能量耗散与破碎分形的长径比效应[J]. 煤炭学报, 2022, 47(4): 1534-1546. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202204011.htm

    Wang Lei, Yuan Qiupeng, Xie Guangxiang, et al. Length-diameter ratio effect of energy dissipation and fractals of coal samples under impact loading[J]. Journal of China Coal Society, 2022, 47(4): 1534-1546. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202204011.htm
    [9] 李地元, 肖鹏, 谢涛, 等. 动静态压缩下岩石试样的长径比效应研究[J]. 实验力学, 2018, 33(1): 93-100. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201801013.htm

    Li Diyuan, Xiao Peng, Xie Tao, et al. On the effect of length to diameter ratio of rock specimen subjected to dynamic and static compression[J]. Journal of Experimental Mechanics, 2018, 33(1): 93-100. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201801013.htm
    [10] 王登科, 刘淑敏, 魏建平, 等. 冲击破坏条件下煤的强度型统计损伤本构模型与分析[J]. 煤炭学报, 2016, 41(12): 3024-3031. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201612013.htm

    Wang Dengke, Liu Shumin, Wei Jianping, et al. Analysis and strength statistical damage constitutive model of coal under impacting failure[J]. Journal of China Coal Society, 2016, 41(12): 3024-3031. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201612013.htm
    [11] 曹文贵, 赵明华, 刘成学. 基于Weibull分布的岩石损伤软化模型及其修正方法研究[J]. 岩石力学与工程学报, 2004, 23(19): 3226-3231. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200419003.htm

    Cao Wengui, Zhao Minghua, Liu Chengxue. Study on the model and its modifying method for rock softening and damage based on weibull random distribution[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(19): 3226-3231. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200419003.htm
    [12] 郑钰, 施浩然, 刘晓辉, 等. 不同应变率下煤岩破坏特征及其本构模型[J]. 爆炸与冲击, 2021, 41(5): 45-57. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202105005.htm

    Zheng Yu, Shi Haoran, Liu Xiaohui, et al. Failure characteristics and constitutive model of coal rock at different strain rates[J]. Explosion and Shock Waves, 2021, 41(5): 45-57. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202105005.htm
    [13] 中国岩石力学与工程学会. T/CSRME 001—2019岩石动力特性试验规程[S]. 北京: 中国标准出版社, 2019.
    [14] 孟庆山, 范超, 曾卫星, 等. 南沙群岛珊瑚礁灰岩的动态力学性能试验[J]. 岩土力学, 2019, 40(1): 183-190. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901016.htm

    Meng Qingshan, Fan Chao, Zeng Weixing, et al. Tests on dynamic properties of coral-reef limestone in South China Sea[J]. Rock and Soil Mechanics, 2019, 40(1): 183-190. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901016.htm
    [15] 李胜林, 凌天龙, 张会歌, 等. 早龄期混凝土动态力学性能实验研究[J]. 矿业科学学报, 2020, 5(5): 502-510. doi: 10.19606/j.cnki.jmst.2020.05.004

    Li Shenglin, Ling Tianlong, Zhang Huige, et al. Experimental research on dynamic mechanics of early age concrete[J]. Journal of Mining Science and Technology, 2020, 5(5): 502-510. doi: 10.19606/j.cnki.jmst.2020.05.004
    [16] 杨国梁, 毕京九, 张志飞, 等. 被动围压下层理角度对页岩动态强度及耗能的影响[J]. 矿业科学学报, 2021, 6(2): 188-195. doi: 10.19606/j.cnki.jmst.2021.02.006

    Yang Guoliang, Bi Jingjiu, Zhang Zhifei, et al. The influence of the bedding angle under passive confining pressure on the dynamic strength and energy consumption of shale[J]. Journal of Mining Science and Technology, 2021, 6(2): 188-195. doi: 10.19606/j.cnki.jmst.2021.02.006
    [17] 解北京, 严正. 基于层叠模型组合煤岩体动态力学本构模型[J]. 煤炭学报, 2019, 44(2): 463-472. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201902014.htm

    Xie Beijing, Yan Zheng. Dynamic mechanical constitutive model of combined coal-rock mass based on overlay model[J]. Journal of China Coal Society, 2019, 44(2): 463-472. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201902014.htm
    [18] 解北京. 煤冲击破坏动力学特性及磁场变化特征实验研究[D]. 北京: 中国矿业大学(北京), 2013.
    [19] 解北京, 王新艳, 吕平洋. 层理煤岩SHPB冲击破坏动态力学特性实验[J]. 振动与冲击, 2017, 36(21): 117-124. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201721018.htm

    Xie Beijing, Wang Xinyan, Lü Pingyang. Dynamic properties of bedding coal and rock and the SHPB testing for its impact damage[J]. Journal of Vibration and Shock, 2017, 36(21): 117-124. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201721018.htm
    [20] 熊仲明, 吕世鸿, 李运良, 等. 被动围压下黄土动态力学性能与能量耗散研究[J]. 岩土力学, 2021, 42(3): 775-782, 789. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103020.htm

    Xiong Zhongming, Lü Shihong, Li Yunliang, et al. Research on dynamic properties and energy dissipation of loess under passive confining pressure conditions[J]. Rock and Soil Mechanics, 2021, 42(3): 775-782, 789. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103020.htm
    [21] 刘思峰, 党耀国, 方志耕. 灰色系统理论及其应用[M]. 5版. 北京: 科学出版社, 2010.
    [22] 李毅. 不同围压下高强混凝土压缩过程中能量演化规律及本构模型研究[D]. 淮南: 安徽理工大学, 2020.
  • 加载中
图(15) / 表(9)
计量
  • 文章访问数:  320
  • HTML全文浏览量:  60
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-31
  • 修回日期:  2022-09-09
  • 刊出日期:  2023-03-30

目录

    /

    返回文章
    返回