留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿地下水库对矿井水净化机理研究进展

蒋斌斌 李井峰 吴敏 苏琛 包一翔 薛蕊

蒋斌斌, 李井峰, 吴敏, 苏琛, 包一翔, 薛蕊. 煤矿地下水库对矿井水净化机理研究进展[J]. 矿业科学学报, 2023, 8(2): 137-145. doi: 10.19606/j.cnki.jmst.2023.02.001
引用本文: 蒋斌斌, 李井峰, 吴敏, 苏琛, 包一翔, 薛蕊. 煤矿地下水库对矿井水净化机理研究进展[J]. 矿业科学学报, 2023, 8(2): 137-145. doi: 10.19606/j.cnki.jmst.2023.02.001
Jiang Binbin, Li Jingfeng, Wu Min, Su Chen, Bao Yixiang, Xue Rui. Review on the purification mechanism of mine water by coal mine underground reservoir[J]. Journal of Mining Science and Technology, 2023, 8(2): 137-145. doi: 10.19606/j.cnki.jmst.2023.02.001
Citation: Jiang Binbin, Li Jingfeng, Wu Min, Su Chen, Bao Yixiang, Xue Rui. Review on the purification mechanism of mine water by coal mine underground reservoir[J]. Journal of Mining Science and Technology, 2023, 8(2): 137-145. doi: 10.19606/j.cnki.jmst.2023.02.001

煤矿地下水库对矿井水净化机理研究进展

doi: 10.19606/j.cnki.jmst.2023.02.001
基金项目: 

国家能源集团科技创新项目 SHJT-16-28

国家能源集团科技创新项目 GJNY-18-78

国家能源集团2030重大项目先导项目 GJNY2030XDXM-19-01.3

详细信息
    作者简介:

    蒋斌斌(1984—),男,河南焦作人,博士,高级工程师,主要从事矿井水处理利用和煤炭深加工等方面的研究工作。Tel:010-57337368,E-mail:binbin.jiang.a@chnenergy.com.cn

    通讯作者:

    李井峰(1981—),男,湖南长沙人,博士,教授级高工,主要从事矿井水和煤化工污水处理回用等方面的研究工作。Tel:010-57337368,E-mail:jingfeng.li@chnenergy.com.cn

  • 中图分类号: TD74

Review on the purification mechanism of mine water by coal mine underground reservoir

  • 摘要: 煤矿地下水库对矿井水的净化作用主要在于库内岩体与矿井水发生的水-岩耦合作用。本文系统梳理了煤矿地下水库水-岩耦合作用的研究方法,指出水样水质测试和岩样理化性质表征项目,并通过静态模拟、动态淋滤、循环净化模拟等试验,探索煤矿地下水库对矿井水的净化规律,利用数值模拟获取反应过程中离子的选择性吸附趋势,结合Piper三线图、Gibbs模型和相关性分析等方法揭示水-岩耦合作用机理。论述了煤矿地下水库对矿井水中悬浮物、特征离子和有机物的净化作用和研究进展,研究表明,煤矿地下水库对矿井水具有一定的净化效果,其中对特征离子的净化主要与溶滤和吸附作用相关;提出了未来煤矿地下水库净化技术的3个研究方向:①基于水-岩耦合净化作用的井下矿井水大规模低成本处理技术;②耦合多种水处理技术的煤矿地下水库“三位一体”水质控制技术;③浓盐废水井下存储及资源化利用技术。
  • 图  1  煤矿地下水库对矿井水悬浮物、特征离子和有机物的作用效果

    Figure  1.  Purification effect of coal mine groundwater reservoir on mine water suspended solids, characteristic ions and organic matter

    图  2  静态模拟试验装置

    Figure  2.  Static simulation test device

    图  3  动态淋滤试验装置

    Figure  3.  Dynamic leaching test device

    图  4  矿井水动态沉降模拟实验系统

    Figure  4.  Simulation experiment system of mine water dynamic settlement

    表  1  水样测试项目及方法

    Table  1.   Water sample testing projects and methods

    检测项目 单位 测试方法 仪器设备
    pH值 玻璃电极法 酸度计
    电导率 μS·cm-1 电极法 电导率仪
    悬浮物 mg·L-1 重量法 电热鼓风干燥箱、分析天平
    浊度 NTU 散射法-福尔马肼标准 浊度计
    TDS mg·L-1 称量法 电热鼓风干燥箱、分析天平
    CO32、HCO3- mg·L-1 滴定法 滴定管
    Na+、K+、Ca2+、Mg2+ mg·L-1 电感耦合等离子体发射光谱法 电感耦合等离子体发射光谱仪
    SO42-、Cl- mg·L-1 离子色谱法 离子色谱仪
    Fe、Mn、Pb、Cu、Zn、Cr、Cd mg·L-1 四级杆电感耦合等离子体质谱法 等离子体质谱仪
    下载: 导出CSV

    表  2  岩样测试项目及方法

    Table  2.   Water sample testing projects and methods

    测试项目 实验方法/实验仪器
    矿物定性、半定量分析 X射线衍射仪(XRD)
    元素定性、半定量分析 X射线荧光光谱分析(XRF)
    比表面积、孔隙率分析 快速比表面/孔隙分析仪(BET)
    表面形貌分析 扫描电子显微镜(SEM)
    下载: 导出CSV
  • [1] Li Z H, Wang G C, Wang X S, et al. Groundwater quality and associated hydrogeochemical processes in Northwest Namibia[J]. Journal of Geochemical Exploration, 2018, 186: 202-214. doi: 10.1016/j.gexplo.2017.12.015
    [2] 潘春芳, 王建平. 金沙江某坝址凝灰岩夹层风化的水-岩作用[J]. 水科学与工程技术, 2008(6): 62-64. doi: 10.3969/j.issn.1672-9900.2008.06.027

    Pan Chunfang, Wang Jianping. Study of water-rock interaction for tuff sandwich decency in some dam-site of Jinsha River[J]. Water Sciences and Engineering Technology, 2008(6): 62-64. doi: 10.3969/j.issn.1672-9900.2008.06.027
    [3] 沈照理, 王焰新. 水-岩相互作用研究的回顾与展望[J]. 地球科学, 2002, 27(2): 127-133. doi: 10.3321/j.issn:1000-2383.2002.02.001

    Shen Zhaoli, Wang Yanxin. Review and outlook of water-rock interaction studies[J]. Earth Science, 2002, 27(2): 127-133. doi: 10.3321/j.issn:1000-2383.2002.02.001
    [4] 虞鹏鹏. 水岩反应及其研究意义[J]. 中山大学研究生学刊: 自然科学、医学版, 2012, 33(4): 25-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201706021.htm

    Yu Pengpeng. Water rock reaction and its significance[J]. Journal of the Graduates Sun Yat-sen University: Natural Science、Medical, 2012, 33(4): 25-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201706021.htm
    [5] 沈照理, 王焰新, 郭华明. 水-岩相互作用研究的机遇与挑战[J]. 地球科学, 2012, 37(2): 207-219. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201202004.htm

    Shen Zhaoli, Wang Yanxin, Guo Huaming. Opportunities and challenges of water-rock interaction studies[J]. Earth Science, 2012, 37(2): 207-219. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201202004.htm
    [6] 孙亚乔. 粉煤灰浸出及浸出液与介质相互作用的水文地球化学机理研究[D]. 西安: 长安大学, 2007.
    [7] 杨荣兴, 周珣若, 张荣华. 水-岩反应实验研究现状与进展[J]. 现代地质, 1995, 9(4): 419-422. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ504.004.htm

    Yang Rongxing, Zhou Xunruo, Zhang Ronghua. Progresses in experimental studies of water-rock interaction[J]. Geoscience-Journal of Graduate School, China University of Geosciences, 1995, 9(4): 419-422. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ504.004.htm
    [8] Tóth J. Groundwater as a geologic agent: an overview of the causes, processes, and manifestations[J]. Hydrogeology Journal, 1999, 7(1): 1-14. doi: 10.1007/s100400050176
    [9] 顾大钊. 煤矿地下水库理论框架和技术体系[J]. 煤炭学报, 2015, 40(2): 239-246. doi: 10.13225/j.cnki.jccs.2014.1661

    Gu Dazhao. Theory framework and technological system of coal mine underground reservoir[J]. Journal of China Coal Society, 2015, 40(2): 239-246. doi: 10.13225/j.cnki.jccs.2014.1661
    [10] 陈苏社, 鞠金峰. 大柳塔煤矿矿井水资源化利用技术[J]. 煤炭科学技术, 2011, 39(2): 125-128. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201102033.htm

    Chen Sushe, Ju Jinfeng. Utilization technology of mine water resources in daliuta mine[J]. Coal Science and Technology, 2011, 39(2): 125-128. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201102033.htm
    [11] 韩佳明, 于妍, 郑然峰, 等. 煤矿地下水库DOM来源解析[J]. 矿业科学学报, 2020, 5(5): 575-583. doi: 10.19606/j.cnki.jmst.2020.05.012

    Han Jiaming, Yu Yan, Zheng Ranfeng, et al. Analysis of the source of DOM in underground reservoir of coal mine[J]. Journal of Mining Science and Technology, 2020, 5(5): 575-583. doi: 10.19606/j.cnki.jmst.2020.05.012
    [12] 于妍, 陈薇, 曹志国, 等. 煤矿地下水库矿井水中溶解性有机质变化特征的研究[J]. 中国煤炭, 2018, 44(10): 168-173. doi: 10.3969/j.issn.1006-530X.2018.10.031

    Yu Yan, Chen Wei, Cao Zhiguo, et al. Research on change features on dissolved organic matter of mine water in coal mine's underground reservoir[J]. China Coal, 2018, 44(10): 168-173. doi: 10.3969/j.issn.1006-530X.2018.10.031
    [13] 曹志国, 何瑞敏, 王兴峰. 地下水受煤炭开采的影响及其储存利用技术[J]. 煤炭科学技术, 2014, 42(12): 113-116, 128. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201412029.htm

    Cao Zhiguo, He Ruimin, Wang Xingfeng. Coal mining affected to underground water and underground water storage and utilization technology[J]. Coal Science and Technology, 2014, 42(12): 113-116, 128. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201412029.htm
    [14] 张凯, 高举, 蒋斌斌, 等. 煤矿地下水库水-岩相互作用机理实验研究[J]. 煤炭学报, 2019, 44(12): 3760-3772. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201912017.htm

    Zhang Kai, Gao Ju, Jiang Binbin, et al. Experimental study on the mechanism of water-rock interaction in the coal mine underground reservoir[J]. Journal of China Coal Society, 2019, 44(12): 3760-3772. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201912017.htm
    [15] Zou J Y, Yang Y S, Zhang H Y. Srisotope fingerprinting of multiple water-source characterizations and its environmental implications in a complex lake-groundwater system, Wudalianchi, Northeast China[J]. Chemosphere, 2018, 212: 1095-1103. doi: 10.1016/j.chemosphere.2018.09.027
    [16] Avci H, Dokuz U E, Avci A S. Hydrochemistry and groundwater quality in a semiarid calcareous area: an evaluation of major ion chemistry using a stoichiometric approach[J]. Environmental Monitoring and Assessment, 2018, 190(11): 641. doi: 10.1007/s10661-018-7021-8
    [17] 王周锋, 郝瑞娟, 杨红斌, 等. 水岩相互作用的研究进展[J]. 水资源与水工程学报, 2015, 26(3): 210-216. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201503044.htm

    Wang Zhoufeng, Hao Ruijuan, Yang Hongbin, et al. Research progress on water-rock interaction[J]. Journal of Water Resources and Water Engineering, 2015, 26(3): 210-216. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201503044.htm
    [18] 韩佳明, 高举, 杜坤, 等. 煤矿地下水库水体水化学特征及其成因解析[J]. 煤炭科学技术, 2020, 48(11): 223-231. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202011028.htm

    Han Jiaming, Gao Ju, Du Kun, et al. Analysis of hydrochemical characteristics and formation mechanism in coal mine underground reservoir[J]. Coal Science and Technology, 2020, 48(11): 223-231. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202011028.htm
    [19] 智国军, 鞠金峰, 刘润, 等. 水岩相互作用对煤矿地下水库水质影响机理研究[J]. 采矿与安全工程学报, 2022, 39(4): 779-785. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202204015.htm

    Zhi Guojun, Ju Jinfeng, Liu Run, et al. Water-rock interaction and its influence on water quality in the underground reservoir. Journal of Mining & Safety Engineering, 2022, 39(4): 779-785. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202204015.htm
    [20] 潘忠华. 陈村大坝坝址区水-岩作用模拟[D]. 南京: 河海大学, 2007.
    [21] Vásárhelyi B, Ván P. Influence of water content on the strength of rock[J]. Engineering Geology, 2006, 84(1/2): 70-74.
    [22] He J H, Li W P, Liu Y, et al. An improved method for determining the position of overlying separated strata in mining[J]. Engineering Failure Analysis, 2018, 83: 17-29.
    [23] 石旭飞, 张文静, 王寒梅, 等. 人工回灌过程中的水-岩相互作用模拟[J]. 吉林大学学报: 地球科学版, 2013, 43(1): 220-227, 234. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201301029.htm

    Shi Xufei, Zhang Wenjing, Wang Hanmei, et al. Modeling of water-rock interaction during the artificial recharge[J]. Journal of Jilin University: Earth Science Edition, 2013, 43(1): 220-227, 234. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201301029.htm
    [24] Pearce J K, Turner L, Pandey D. Experimental and predicted geochemical shale-water reactions: roseneath and murteree shales of the cooper basin[J]. International Journal of Coal Geology, 2018, 187: 30-44.
    [25] Goren O, Gavrieli I, Burg A, et al. Cation exchange and CaCO3 dissolution during artificial recharge of effluent to a calcareous sandstone aquifer[J]. Journal of Hydrology, 2011, 400(1/2): 165-175.
    [26] Zhang K, Gao J, Men D P, et al. Insight into the heavy metal binding properties of dissolved organic matter in mine water affected by water-rock interaction of coal seam goaf[J]. Chemosphere, 2021, 265: 129134.
    [27] 林学钰, 张文静, 何海洋, 等. 人工回灌对地下水水质影响的室内模拟实验[J]. 吉林大学学报: 地球科学版, 2012, 42(5): 1404-1409, 1433. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201205014.htm

    Lin Xueyu, Zhang Wenjing, He Haiyang, et al. Experiment on impact of groundwater quality during artificial recharge process[J]. Journal of Jilin University: Earth Science Edition, 2012, 42(5): 1404-1409, 1433. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201205014.htm
    [28] 白国良, 梁冰, 唐晓楠. 酸性矿井水入渗过程中的水岩作用[J]. 辽宁工程技术大学学报: 自然科学版, 2009, 28(S1): 162-164. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY2009S1049.htm

    Bai Guoliang, Liang Bing, Tang Xiaonan. Water-rock interaction during infiltration of acid mine drainage[J]. Journal of Liaoning Technical University: Natural Science, 2009, 28(S1): 162-164. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY2009S1049.htm
    [29] 黄平华, 陈建生, 宁超, 等. 焦作矿区地下水水化学特征及其地球化学模拟[J]. 现代地质, 2010, 24(2): 369-376. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201002024.htm

    Huang Pinghua, Chen Jiansheng, Ning Chao, et al. Hydrochemical characteristics and hydrogeochemical modeling of groundwater in the Jiaozuo mining district[J]. Geoscience, 2010, 24(2): 369-376. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201002024.htm
    [30] Salcedo Sánchez E R, Garrido Hoyos S E, Esteller M V, et al. Hydrogeochemistry and water-rock interactions in the urban area of Puebla Valley aquifer (Mexico)[J]. Journal of Geochemical Exploration, 2017, 181: 219-235.
    [31] 张为, 任亚楠, 赵晓琳, 等. 天然钠长石和钾长石对水溶液中氟吸附性能的研究[J]. 云南大学学报: 自然科学版, 2020, 42(5): 977-984. https://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ202005021.htm

    Zhang Wei, Ren Yanan, Zhao Xiaolin, et al. Investigations of the adsorption of fluoride on natural sodium feldspar and potassium feldspar in aqueous solution[J]. Journal of Yunnan University: Natural Sciences Edition, 2020, 42(5): 977-984. https://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ202005021.htm
    [32] Liu Q, Zhang X, Jiang B B, et al. Molecular dynamics simulation of ion adsorption and ligand exchange on an orthoclase surface[J]. ACS Omega, 2021, 6(23): 14952-14962.
    [33] 鲁安怀. 矿物法: 环境污染治理的第四类方法[J]. 地学前缘, 2005, 12(1): 196-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY20050100P.htm

    Lu Anhuai. New advances in the study of environmental mineralogical materials: pollution treatment by inorganic minerals—the fourth category of pollution treatment methods[J]. Earth Science Frontiers, 2005, 12(1): 196-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY20050100P.htm
    [34] 顾大钊, 李庭, 李井峰, 等. 我国煤矿矿井水处理技术现状与展望[J]. 煤炭科学技术, 2021, 49(1): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202101002.htm

    Gu Dazhao, Li Ting, Li Jingfeng, et al. Current status and prospects of coal mine water treatment technology in China[J]. Coal Science and Technology, 2021, 49(1): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202101002.htm
    [35] 顾大钊, 李井峰, 曹志国, 等. 我国煤矿矿井水保护利用发展战略与工程科技[J]. 煤炭学报, 2021, 46(10): 3079-3089. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202110001.htm

    Gu Dazhao, Li Jingfeng, Cao Zhiguo, et al. Technology and engineering development strategy of water protection and utilization of coal mine in China[J]. Journal of China Coal Society, 2021, 46(10): 3079-3089. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202110001.htm
    [36] 蒋斌斌, 刘舒予, 任洁, 等. 煤矿地下水库对含不同赋存形态有机物及重金属矿井水净化效果研究[J]. 煤炭工程, 2020, 52(1): 122-127. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202001028.htm

    Jiang Binbin, Liu Shuyu, Ren Jie, et al. Purification effect of coal mine groundwater reservoir on mine water containing organic compounds and heavy metals in different occurrence forms[J]. Coal Engineering, 2020, 52(1): 122-127. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202001028.htm
    [37] 方志远. 万利一矿采空区垮裂煤岩对地下水库储水净化机理研究[D]. 徐州: 中国矿业大学, 2020.
    [38] 赵峰华, 郭元, 孙红福, 等. 辛置煤矿主要含水层的自由排水柱淋滤实验与水岩作用机理[J]. 煤炭学报, 2019, 44(4): 1207-1215. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201904027.htm

    Zhao Fenghua, Guo Yuan, Sun Hongfu, et al. Free draining column leaching experiment and mechanism of water-rock interaction in main aquifer of Xinzhi coal mine[J]. Journal of China Coal Society, 2019, 44(4): 1207-1215. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201904027.htm
    [39] 姜腾达. 粘土矿物对水中Pb2+、Cu2+、Cd2+的吸附及机理研究[D]. 长沙: 中南大学, 2014.
    [40] 吴大清, 刁桂仪, 彭金莲. 矿物对金属离子的竞争吸附实验研究[J]. 地球化学, 1997, 26(6): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199706003.htm

    Wu Daqing, Diao Guiyi, Peng Jinlian. Experiment on the competetion adsorptions of metal ions onto minerals[J]. Geochimica, 1997, 26(6): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199706003.htm
    [41] 杨建, 王强民, 王甜甜, 等. 神府矿区井下综采设备检修过程中矿井水水质变化特征[J]. 煤炭学报, 2019, 44(12): 3710-3718. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201912012.htm

    Yang Jian, Wang Qiangmin, Wang Tiantian, et al. Mine water quality variation during the overhaul of fully mechanized mining equipment in Shenfu mining area[J]. Journal of China Coal Society, 2019, 44(12): 3710-3718. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201912012.htm
    [42] 杨建, 靳德武. 井上下联合处理工艺处理矿井水过程中溶解性有机质变化特征[J]. 煤炭学报, 2015, 40(2): 439-444. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201502032.htm

    Yang Jian, Jin Dewu. Variation characteristics of dissolved organic matter in underground mine water with combined water treatment process at surface and underground mine[J]. Journal of China Coal Society, 2015, 40(2): 439-444. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201502032.htm
    [43] 赵丽, 孙艳芳, 杨志斌, 等. 煤矸石去除矿井水中水溶性有机物及氨氮的实验研究[J]. 煤炭学报, 2018, 43(1): 236-241. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801029.htm

    Zhao Li, Sun Yanfang, Yang Zhibin, et al. Removal efficiencies of dissolved organic matter and ammonium in coal mine water by coal gangue through column experiments[J]. Journal of China Coal Society, 2018, 43(1): 236-241. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801029.htm
    [44] 徐宏祥. 有机废水的煤吸附净化机理研究[D]. 徐州: 中国矿业大学, 2015.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  439
  • HTML全文浏览量:  71
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-22
  • 修回日期:  2022-07-07
  • 刊出日期:  2023-03-30

目录

    /

    返回文章
    返回