留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CaCl2-热处理煤泥制备复合材料及其活化PMS降解苯酚性能

王奇洲 李春全 殷帅军 孙志明

王奇洲, 李春全, 殷帅军, 孙志明. CaCl2-热处理煤泥制备复合材料及其活化PMS降解苯酚性能[J]. 矿业科学学报, 2023, 8(1): 127-136. doi: 10.19606/j.cnki.jmst.2023.01.012
引用本文: 王奇洲, 李春全, 殷帅军, 孙志明. CaCl2-热处理煤泥制备复合材料及其活化PMS降解苯酚性能[J]. 矿业科学学报, 2023, 8(1): 127-136. doi: 10.19606/j.cnki.jmst.2023.01.012
Wang Qizhou, Li Chunquan, Yin Shuaijun, Sun Zhiming. Preparation of CaCl2-heat treated coal slime based composite catalytic material and its performance toward phenol degradation by activating peroxymonosulfate[J]. Journal of Mining Science and Technology, 2023, 8(1): 127-136. doi: 10.19606/j.cnki.jmst.2023.01.012
Citation: Wang Qizhou, Li Chunquan, Yin Shuaijun, Sun Zhiming. Preparation of CaCl2-heat treated coal slime based composite catalytic material and its performance toward phenol degradation by activating peroxymonosulfate[J]. Journal of Mining Science and Technology, 2023, 8(1): 127-136. doi: 10.19606/j.cnki.jmst.2023.01.012

CaCl2-热处理煤泥制备复合材料及其活化PMS降解苯酚性能

doi: 10.19606/j.cnki.jmst.2023.01.012
基金项目: 

国家重点研发计划 2020YFC1806504

中央高校基本科研业务费专项资金 2021JCCXHH04

详细信息
    作者简介:

    王奇洲(1997—),男,浙江宁波人,硕士研究生,主要从事煤系资源综合利用等方面的研究工作。Tel:17801155805, E-mail:wangqizhou97@163.com

    通讯作者:

    李春全(1992—),男,山西运城人,博士,副教授,主要从事非金属矿物材料、煤系资源综合利用等方面的研究工作。Tel:010-62339920,E-mail:chunquanli@cumtb.edu.cn

    孙志明(1986—), 男, 山东临沂人,博士,教授,主要从事非金属矿物材料、煤系资源综合利用等方面的研究工作。Tel:010-62339920, E-mail:zhimingsun@cumtb.edu.cn

  • 中图分类号: TD985

Preparation of CaCl2-heat treated coal slime based composite catalytic material and its performance toward phenol degradation by activating peroxymonosulfate

  • 摘要: 基于我国煤泥当前综合利用现状与煤矿集聚区地下水体污染治理的迫切需求,以煤泥(CS)为原料,添加不同质量的CaCl2作为活化剂,采用混合绝氧煅烧的方式制备了不同配比的煤泥基复合催化材料,利用X射线衍射(XRD)、扫描电镜(SEM)、比表面积测试(BET)、红外光谱(FT-IR)、X射线光电子能谱(XPS)、拉曼光谱等手段对其进行表征,并研究其用于活化过一硫酸氢钾复合盐(PMS)和催化降解水中苯酚的性能。结果表明:CaCl2-热处理煤泥制得的催化材料能高效活化PMS和降解苯酚;当煤泥与CaCl2质量比为4∶3时所制备的复合材料应用效能最优,苯酚降解率可达100 %;降解体系中活性物种1O2起主要作用;催化材料pH值适用范围(3.0~11.0)较广,且水体中各种阴离子对苯酚降解的影响较为有限,展现出良好的应用前景。
  • 图  1  不同活化剂用量催化剂苯酚降解曲线

    Figure  1.  Degradation curves of catalysts with different amount of active agent towards phenol

    图  2  煤泥和不同用量CaCl2制备样品XRD图谱

    Figure  2.  XRD patterns of coal slime and sample prepared with different amounts of CaCl2

    图  3  CS/Ca-0.75样品不同放大倍数的SEM照片

    Figure  3.  SEM images with different magnification of CS/Ca-0.75 sample

    图  4  煤泥和不同用量CaCl2制备催化剂样品的N2等温吸脱附曲线以及孔容、孔径分布曲线

    Figure  4.  N2 adsorption-desorption isotherms and BJH pore size distribution plots of coal slime and catalyst samples prepared with different amounts of CaCl2

    图  5  不同CaCl2用量样品红外光谱

    Figure  5.  FTIR spectra of catalytic materials prepared with different amounts of CaCl2

    图  6  煤泥和CS/Ca-0.75样品拉曼光谱

    Figure  6.  Raman spectra of coal slime and CS/Ca-0.75 samples

    图  7  CS/Ca-0.75样品的XPS图

    Figure  7.  XPS spectra of CS/Ca-0.75 sample

    图  8  不同催化剂用量对活化PMS降解苯酚的影响曲线及其准一级动力学曲线

    Figure  8.  Degradation curves with different catalyst dosage towards phenol and First order kinetic curves

    图  9  CS/Ca-0.75/PMS/苯酚体系中自由基淬灭实验结果

    Figure  9.  Results of quenching experiment on phenol degradation in CS/Ca-0.75/PMS/Phenol system

    图  10  CS/Ca-0.75/PMS/苯酚体系的ESR图谱

    Figure  10.  ESR spectra of ·OH, SO4·- and 1O2 in CS/Ca-0.75/PMS/Phenol system

    图  11  不同初始pH值对催化剂活化PMS降解苯酚的影响曲线

    Figure  11.  Degradation curves of catalyst with different initial pH values towards phenol

    图  12  阴离子种类对CS/Ca-0.75/PMS/苯酚体系的影响

    Figure  12.  Effects of inorganic anions on phenol degradation in CS/Ca-0.75/PMS/Phenol system

    图  13  不同PMS用量对降解苯酚的影响曲线

    Figure  13.  Degradation curves with different PMS dosages towards phenol

    表  1  煤泥及不同用量CaCl2制备催化剂样品的孔结构特性

    Table  1.   Pore structure characteristics of coal slime and catalytic samples prepared with different amounts of CaCl2

    样品 比表面积/(m2·g-1) 孔容/(cm3·g-1) 平均孔径/nm
    纯煤泥 10.681 0.037 13.750
    CS/Ca-0.25 44.333 0.048 4.344
    CS/Ca-0.5 36.412 0.044 4.883
    CS/Ca-0.75 21.241 0.034 6.387
    CS/Ca-1 18.406 0.032 6.945
    CS/Ca-1.5 18.182 0.024 5.599
    下载: 导出CSV
  • [1] Septian A, Kumar A V N, Sivasankar A, et al. Colloidal activated carbon as a highly efficient bifunctional catalyst for phenol degradation[J]. Journal of Hazardous Materials, 2021, 414: 125474. doi: 10.1016/j.jhazmat.2021.125474
    [2] Wang J L, Wang S Z. Activation of persulfate(PS)and peroxymonosulfate(PMS)and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059
    [3] Yuan B, Mao X Z, Wang Z, et al. Radical-induced oxidation removal of multi-air-pollutant: a critical review[J]. Journal of Hazardous Materials, 2020, 383: 121162. doi: 10.1016/j.jhazmat.2019.121162
    [4] 刘楚汉, 于海洋, 梁永森, 等. 过硫酸盐活化技术研究进展及展望[J]伊犁师范学院学报: 自然科学版, 2020, 14(2): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YLZK202002009.htm

    Liu Chuhan, Yu Haiyang, Liang Yongsen, et al. Research progress and prospect of persulfate activation technology[J]. Journal of Yili Normal University: Natural Science Edition, 2020, 14(2): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YLZK202002009.htm
    [5] Huang W Q, Xiao S, Zhong H, et al. Activation of persulfates by carbonaceous materials: a review[J]. Chemical Engineering Journal, 2021, 418: 129297. doi: 10.1016/j.cej.2021.129297
    [6] Chen J B, Zhang L M, Huang T Y, et al. Decolorization of azo dye by peroxymonosulfate activated by carbon nanotube: radical versus non-radical mechanism[J]. Journal of Hazardous Materials, 2016, 320: 571-580. doi: 10.1016/j.jhazmat.2016.07.038
    [7] Kemmou L, Frontistis Z, Vakros J, et al. Degradation of antibiotic sulfamethoxazole by biochar-activated persulfate: factors affecting the activation and degradation processes[J]. Catalysis Today, 2018, 313: 128-133. doi: 10.1016/j.cattod.2017.12.028
    [8] 司玉成, 杜美利. 煤泥利用研究进展[J]. 广东化工, 2017, 44(4): 79-80. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHG201704034.htm

    Si Yucheng, Du Meili. Research progress of slime utilization[J]. Guangdong Chemical Industry, 2017, 44(4): 79-80. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHG201704034.htm
    [9] 杨胜利, 王家臣, 李明. 煤矿采场围岩智能控制技术路径与设想[J]. 矿业科学学报, 2022, 7(4): 403-416. doi: 10.19606/j.cnki.jmst.2022.04.002

    Yang Shengli, Wang Jiachen, Li Ming. Technology path and assumptions of intelligent surrounding rock control at longwall working face[J]. Journal of Mining Science and Technology, 2022, 7(4): 403-416. doi: 10.19606/j.cnki.jmst.2022.04.002
    [10] 陈荣芳, 郭志国, 张俊, 等. 氧化煤低温氧化特性及演化规律[J]. 矿业科学学报, 2022, 7(4): 498-504. doi: 10.19606/j.cnki.jmst.2022.04.012

    Chen Rongfang, Guo Zhiguo, Zhang Jun, et al. Characteristics and evolution law of low-temperature oxidation of oxidized coal at recrudescence stage[J]. Journal of Mining Science and Technology, 2022, 7(4): 498-504. doi: 10.19606/j.cnki.jmst.2022.04.012
    [11] 刘梦, 王汉林, 刘海波, 等. 热分解黄铁矿制备单斜磁黄铁矿活化PDS降解土霉素[J]. 硅酸盐学报, 2021, 49(7): 1403-1411. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202107016.htm

    Liu Meng, Wang Hanlin, Liu Haibo, et al. Monoclinic pyrrhotite derived from pyrite through thermal decomposition to activate PDS for the degradation of oxytetracycline[J]. Journal of the Chinese Ceramic Society, 2021, 49(7): 1403-1411. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202107016.htm
    [12] 郝名远, 陈欢乐, 李淑敏, 等. 煤矸石制备气凝胶研究进展[J]. 矿产保护与利用, 2022, 42(1): 172-178. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH202201024.htm

    Hao Mingyuan, Chen Huanle, Li Shumin, et al. Research progress on the preparation of aerogel from coal gangue[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 172-178. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH202201024.htm
    [13] 朱红龙, 帅欢, 刘莉, 等. 非金属矿物材料在矿山废水处理中的应用[J]. 矿产保护与利用, 2021, 41(1): 26-31. doi: 10.13779/j.cnki.issn1001-0076.2021.01.004

    Zhu Honglong, Shuai Huan, Liu Li, et al. Reviews in application of non-metallic minerals materials used in mine wastewater treatment[J]. Conservation and Utilization of Mineral Resources, 2021, 41(1): 26-31. doi: 10.13779/j.cnki.issn1001-0076.2021.01.004
    [14] Traoré K, Kabré T S, Blanchart P. Gehlenite and anorthite crystallisation from kaolinite and calcite mix[J]. Ceramics International, 2003, 29(4): 377-383. doi: 10.1016/S0272-8842(02)00148-7
    [15] 李春全, 王丝蒂, 汪欣林, 等. 风化煤基催化材料的制备及其活化PMS降解苯酚[J]. 煤炭学报, 2022, 47(5): 2067-2077. doi: 10.13225/j.cnki.jccs.2022.0181

    Li Chunquan, Wang Sidi, Wang Xinlin, et al. Preparation of weathered coal-based catalytic material and its performance in phenol degradation by activating peroxymonosulfate[J]. Journal of China Coal Society, 2022, 47(5): 2067-2077. doi: 10.13225/j.cnki.jccs.2022.0181
    [16] Fernández-Jiménez A, Palomo A. Mid-infrared spectroscopic studies of alkali-activated fly ash structure[J]. Microporous and Mesoporous Materials, 2005, 86(1/2/3): 207-214.
    [17] Li C Q, Sun Z M, Song A K, et al. Flowing nitrogen atmosphere induced rich oxygen vacancies overspread the surface of TiO2/kaolinite composite for enhanced photocatalytic activity within broad radiation spectrum[J]. Applied Catalysis B: Environmental, 2018, 236: 76-87. doi: 10.1016/j.apcatb.2018.04.083
    [18] Ma L, Yu W C, Ren L F, et al. Micro-characteristics of low-temperature coal oxidation in CO2/O2 and N2/O2 atmospheres[J]. Fuel, 2019, 246: 259-267. doi: 10.1016/j.fuel.2019.02.073
    [19] Starck J, Burg P, Cagniant D, et al. The effect of demineralisation on a lignite surface properties[J]. Fuel, 2004, 83(7/8): 845-850.
    [20] Wu H Y, Peng W Q, Wang Z M, et al. Cerium-doped gehlenite supporting silver/silver chloride for continuous photocatalysis[J]. RSC Advances, 2016, 6(44): 37995-38003. doi: 10.1039/C6RA02444K
    [21] Chen X N, Wang X H, de Fang. A review on C1s XPS-spectra for some kinds of carbon materials[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2020, 28(12): 1048-1058.
    [22] Song P, Wan C Y, Xie Y L, et al. Stepwise exfoliation of bound rubber from carbon black nanoparticles and the structure characterization[J]. Polymer Testing, 2018, 71: 115-124. doi: 10.1016/j.polymertesting.2018.08.032
    [23] Geng Y, Song Y, Zhong M, et al. Influence of the pitch fluoride on the electrical conductivity of the activated carbon cloth as electrodes of the supercapacitor[J]. Materials Letters, 2010, 64(24): 2673-2675. doi: 10.1016/j.matlet.2010.09.009
    [24] Bardenhagen I, Fenske M, Fenske D, et al. Distribution of discharge products inside of the lithium/oxygen battery cathode[J]. Journal of Power Sources, 2015, 299: 162-169. doi: 10.1016/j.jpowsour.2015.08.089
    [25] Hu Y W. Biomass carbon materials derived from starch and their electrochemical properties[J]. International Journal of Electrochemical Science, 2021: 210359. doi: 10.20964/2021.03.05
    [26] Dudric R, Vladescu A, Rednic V, et al. XPS study on La0.67Ca0.33Mn1-xCoxO3 compounds[J]. Journal of Molecular Structure, 2014, 1073: 66-70. doi: 10.1016/j.molstruc.2014.04.065
    [27] Lan Q, Sun S R, Wu P, et al. Co-doped CuO/visible light synergistic activation of PMS for degradation of rhodamine B and its mechanism[J]. Journal of Inorganic Materials, 2021, 36(11): 1171. doi: 10.15541/jim20210090
    [28] Ding D H, Yang S J, Chen L W, et al. Degradation of norfloxacin by CoFe alloy nanoparticles encapsulated in nitrogen doped graphitic carbon(CoFe@N-GC)activated peroxymonosulfate[J]. Chemical Engineering Journal, 2020, 392: 123725. doi: 10.1016/j.cej.2019.123725
    [29] 张祥伟, 李春全, 郑水林, 等. 热还原法制备g-C3N4/高岭石复合材料及其光/过硫酸盐协同催化性能[J]. 硅酸盐学报, 2021, 49(7): 1337-1346. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202107009.htm

    Zhang Xiangwei, Li Chunquan, Zheng Shuilin, et al. Photocatalysis coupled with persulfate oxidation over nitrogen vacancies modified g-C3N4/kaolinite composite for highly efficient removal of bisphenol A[J]. Journal of the Chinese Ceramic Society, 2021, 49(7): 1337-1346. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202107009.htm
    [30] Chou Y C, Lo S L, Kuo J, et al. Microwave-enhanced persulfate oxidation to treat mature landfill leachate[J]. Journal of Hazardous Materials, 2015, 284: 83-91. doi: 10.1016/j.jhazmat.2014.10.043
    [31] Jiang M D, Lu J H, Ji Y F, et al. Bicarbonate-activated persulfate oxidation of acetaminophen[J]. Water Research, 2017, 116: 324-331. doi: 10.1016/j.watres.2017.03.043
    [32] Liu N, Ding F, Weng C H, et al. Effective degradation of primary color direct azo dyes using Fe-0 aggregates-activated persulfate process[J]. Journal of Environmental Management, 2018, 206: 565-576.
    [33] Wang H P, Wang J, Pi Y C, et al. Double perovskite LaFex Ni1-x O3 nanorods enable efficient oxygen evolution electrocatalysis[J]. Angewandte Chemie: International Ed in English, 2019, 58(8): 2316-2320. doi: 10.1002/anie.201812545
    [34] Zhu Y M, Zhang L, Zhao B T, et al. Oxygen defect engineering: improving the activity for oxygen evolution reaction by tailoring oxygen defects in double perovskite oxides(adv. funct. mater. 34/2019)[J]. Advanced Functional Materials, 2019, 29(34): 1970236. doi: 10.1002/adfm.201970236
    [35] 王莹, 魏成耀, 黄天寅, 等. 氮掺杂碳纳米管活化过一硫酸盐降解酸性橙AO7[J]. 中国环境科学, 2017, 37(7): 2583-2590. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201707023.htm

    Wang Ying, Wei Chengyao, Huang Tianyin, et al. Activation of peroxymonosulfate by nitrogen-doped carbon nanotubes to decolorize acid orange 7[J]. China Environmental Science, 2017, 37(7): 2583-2590. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201707023.htm
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  183
  • HTML全文浏览量:  39
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-06
  • 修回日期:  2022-08-21
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回