留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采动岩层全空间“类双曲面”立体移动模型

左建平 李颖 李宏杰 于美鲁 吴作启 刘家顺

左建平, 李颖, 李宏杰, 于美鲁, 吴作启, 刘家顺. 采动岩层全空间“类双曲面”立体移动模型[J]. 矿业科学学报, 2023, 8(1): 1-14. doi: 10.19606/j.cnki.jmst.2023.01.001
引用本文: 左建平, 李颖, 李宏杰, 于美鲁, 吴作启, 刘家顺. 采动岩层全空间“类双曲面”立体移动模型[J]. 矿业科学学报, 2023, 8(1): 1-14. doi: 10.19606/j.cnki.jmst.2023.01.001
Zuo Jianping, Li Ying, Li Hongjie, Yu Meilu, Wu Zuoqi, Liu Jiashun. The model of spatial analogous hyperboloid for three-dimensional rock strata movement in mining engineering[J]. Journal of Mining Science and Technology, 2023, 8(1): 1-14. doi: 10.19606/j.cnki.jmst.2023.01.001
Citation: Zuo Jianping, Li Ying, Li Hongjie, Yu Meilu, Wu Zuoqi, Liu Jiashun. The model of spatial analogous hyperboloid for three-dimensional rock strata movement in mining engineering[J]. Journal of Mining Science and Technology, 2023, 8(1): 1-14. doi: 10.19606/j.cnki.jmst.2023.01.001

采动岩层全空间“类双曲面”立体移动模型

doi: 10.19606/j.cnki.jmst.2023.01.001
基金项目: 

国家杰出青年科学基金 52225404

北京市卓越青年科学家项目 BJJWZYJH01201911413037

详细信息
    作者简介:

    左建平(1978—),男,江西高安人,教授,博士生导师,主要从事采矿岩石力学与岩层控制等方面的研究工作。Tel:010-62331358,E-mail:zjp@cumtb.edu.cn

  • 中图分类号: TD325

The model of spatial analogous hyperboloid for three-dimensional rock strata movement in mining engineering

  • 摘要: 基于大量现场调研及岩层移动内外“类双曲线”移动模型分析,本文对哈拉沟煤矿厚松散岩层煤层开挖展开了物理相似模型试验,验证了内外“类双曲线”整体移动模型的有效性;将其推广到三维空间,提出采动岩层全空间“类双曲面”立体移动模型。该模型包含“类单叶”、“类双叶”两类双曲面,能近似描述不同岩性条件下全空间采动岩层立体移动与地表沉陷特征。“类单叶双曲面”模型为空间岩层水平移动边界模型,隐含于厚松散层覆岩内部;“类双叶双曲面”模型为空间地表沉降与覆岩裂隙拱、冒落拱垂向移动边界模型,均在主关键层近似关于“原点”对称,具体表现为采掘扰动下地表沉陷及采场围岩拱形垮落等外部形态。通过理论分析、相似模型试验及3DEC数值模拟,本文建立并验证了厚松散层近水平煤层开采条件下空间采动岩层立体移动与地表沉陷“类双曲面”模型。同时,分析了共渐近锥面“类双曲面”模型的构成条件、影响因素及整体运移规律。研究结果表明:在薄基岩厚松散层近水平煤层开采条件下,“类双曲面”理论模型与3DEC模拟结果吻合较好,表明采动空间覆岩运移和地表沉降呈“类双曲面”特征。
  • 图  1  厚松散层覆岩“类双曲线”整体移动模型[15]

    Figure  1.  Analogous hyperbola movement model of overlying rock strata with thick alluvium[15]

    图  2  岩层移动与地表沉降共轭内外“类双曲线”整体移动模型[21]

    Ⅰ—冒落带;Ⅱ—裂隙带;Ⅲ—弯曲下沉带(地表下沉带);A、B、C—砌体梁结构;A—支撑压力影响区;B—离层区;C—重新压实区;D—地表沉降范围

    Figure  2.  Conjugate analogous hyperbola model of strata movement and surface subsidence[21]

    图  3  相似模型试验采后状态[30]

    Figure  3.  Post harvest state diagram of similar model test[30]

    图  4  哈拉沟煤矿相似模型试验

    Figure  4.  State diagram of similarity model experiment before and after mining

    图  5  采动岩层三维空间立体移动模型

    Figure  5.  Three-dimensional moving model of mining rock strata

    图  6  采动岩层空间“类单叶双曲面”模型

    kx方向主关键层破断长度的1/2py方向主关键层破断长度的1/2r—工作面煤层到地面高度的1/2DiDj—分别为x方向和y方向的地表沉陷距离;xyz—分别为工作面推进方向、工作面布置方向以及埋深方向

    Figure  6.  Analogous single leaf hyperboloid model of mining strata space

    图  7  采动岩层空间“类双叶双曲面”模型

    Figure  7.  Analogous double leaf hyperboloid model of mining strata space

    图  8  不同工作面布置下俯视剖面变化

    Figure  8.  Variation of top view section under different working face arrangements

    图  9  哈拉沟煤矿3DEC数值模型

    Figure  9.  3DEC numerical model of Halagou coal mine

    图  10  岩层移动与地表沉降“类双曲面”形成位移云图

    Figure  10.  The "hyperboloid" of rock strata movement and surface subsidence forms the displacement cloud map

    表  1  各岩层主要物理力学参数[30]

    Table  1.   Main physical and mechanical parameters of rock strata[30]

    序号 岩性 厚度Hr/m 抗压强度
    σc/MPa
    抗拉强度
    σt/MPa
    弹性模量
    E/GPa
    泊松比μ 内摩
    擦角φ/(°)
    黏聚力
    c/MPa
    密度
    ρ/(kg·m-3)
    1 风积沙 0~12 0 0 0.05 0.37 21.03 0 1 830
    2 细砂岩 12~27 38.74 2.16 6.00 0.36 36.12 4.99 2 161
    3 中砂岩2 27~35 31.69 1.96 5.96 0.34 38.11 5.33 2 296
    4 泥岩2 35~44 46.08 5.63 6.06 0.32 41.43 2.08 2 316
    5 中砂岩1 44~55 24.62 2.86 3.95 0.35 38.08 3.70 2 048
    6 泥岩1 55~61 56.83 1.51 6.51 0.33 40.30 3.31 2 291
    7 砂岩2 61~69 55.62 2.63 5.98 0.33 40.99 2.65 2 390
    8 煤层 69~74 39.59 2.31 3.21 0.32 27.06 1.37 1 482
    9 砂岩1 74~124 54.59 2.58 6.06 0.33 39.56 2.78 2 298
    下载: 导出CSV

    表  2  平行截割“类单叶双曲面”模型

    Table  2.   Parallel cutting of analogous single leaf hyperboloid model

    平行截割 第1组 第2组 第3组
    坐标平面 截面位置 z=0 x=0 y=0
    方程 $\left\{\begin{array} { l } { \frac { x ^ { 2 } } { k ^ { 2 } } + \frac { y ^ { 2 } } { p ^ { 2 } } = 1 } \\ { z = 0 } \end{array}\right.$ $\left\{\begin{array} { l } { \frac { y ^ { 2 } } { p ^ { 2 } } - \frac { z ^ { 2 } } { r ^ { 2 } } = 1 } \\ { x = 0 } \end{array} \right.$ $ \left\{\begin{array}{l} \frac{x^2}{k^2}-\frac{z^2}{r^2}=1 \\ y=0 \end{array}\right.$
    任意平面 截面位置 z=h x=h y=h
    方程 $\left\{\begin{array}{l}\frac{x^2}{k^2}+\frac{y^2}{p^2}=1-\frac{h^2}{r^2} \\ z=h\end{array}\right.$ $\left\{\begin{array}{l}\frac{y^2}{p^2}-\frac{z^2}{r^2}=1-\frac{x^2}{k^2} \\ x=h\end{array}\right.$ $\left\{\begin{array}{l}\frac{x^2}{k^2}-\frac{z^2}{r^2}=1-\frac{h^2}{p^2} \\ y=h\end{array}\right.$
    截面图
    下载: 导出CSV

    表  3  平行截割“类双叶双曲面”模型

    Table  3.   Parallel cutting of analogous double leaf hyperboloid model

    平行截割 第1组 第2组 第3组
    坐标平面 截面位置 z=0 x=0 y=0
    方程 不相交 $\left\{\begin{array} { l } { \frac { z ^ { 2 } } { t ^ { 2 } } - \frac { y ^ { 2 } } { s ^ { 2 } } = 1 } \\ { x = 0 } \end{array}\right.$ $\left\{\begin{array}{l} \frac{z^2}{t^2}-\frac{x^2}{w^2}=1 \\ y=0 \end{array}\right.$
    任意平面 截面位置 z=h x=h y=h
    方程 $\left\{\begin{array} { l } { \frac { x ^ { 2 } } { w ^ { 2 } } + \frac { y ^ { 2 } } { s ^ { 2 } } = - 1 + \frac { z ^ { 2 } } { t ^ { 2 } } } \\ { z = h } \end{array} \right.$ $\left\{\begin{array} { l } { \frac { y ^ { 2 } } { s ^ { 2 } } - \frac { z ^ { 2 } } { t ^ { 2 } } = - 1 - \frac { x ^ { 2 } } { w ^ { 2 } } } \\ { x = h } \end{array}\right.$ $\left\{\begin{array}{l} \frac{x^2}{w^2}-\frac{z^2}{t^2}=-1-\frac{y^2}{s^2} \\ y=h \end{array}\right.$
    截面图
    下载: 导出CSV

    表  4  不同开采条件下“类单叶双曲面”模型的拓扑演化规律

    Table  4.   Topological evolution law of analogous single leaf yperboloid model under different mining conditions

  • [1] 许延春, 张玉卓. 应用离散元法分析采矿引起厚松散层变形的特征[J]. 煤炭学报, 2002, 27(3): 268-272. doi: 10.3321/j.issn:0253-9993.2002.03.010

    Xu Yanchun, Zhang Yuzhuo. Deformation characteristicsof the thick unconsolidated layers due to mining by UDEC[J]. Journal of China Coal Society, 2002, 27(3): 268-272. doi: 10.3321/j.issn:0253-9993.2002.03.010
    [2] 刘义新, 戴华阳, 姜耀东. 厚松散层矿区采动岩土体移动规律模拟试验研究[J]. 采矿与安全工程学报, 2012, 29(5): 700-706. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201205018.htm

    Liu Yixin, Dai Huayang, Jiang Yaodong. Model test for mining-induced movement law of rock and soil mass under thick unconsolidated layers[J]. Journal of Mining & Safety Engineering, 2012, 29(5): 700-706. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201205018.htm
    [3] Hu H F, Lian X G. Subsidence rules of underground coal mines for different soil layer thickness: Lu'an Coal Base as an example, China[J]. International Journal of Coal Science & Technology, 2015, 2(3): 178-185.
    [4] 钱鸣高, 朱德仁, 王作棠. 老顶岩层断裂型式及对工作面来压的影响[J]. 中国矿业学院学报, 1986, 15(2): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD198602001.htm

    Qian Minggao, Zhu Deren, Wang Zuotang. The fracture types of main roof and their effects on roof pressure in coal face[J]. Journal of China University of Mining & Technology, 1986, 15(2): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD198602001.htm
    [5] 钱鸣高, 缪协兴, 何富连. 采场"砌体梁"结构的关键块分析[J]. 煤炭学报, 1994, 19(6): 557-563. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB406.000.htm

    Qian Minggao, Miao Xiexing, He Fulian. Analysis of key block in the structure of voussoir beam in longwall mining[J]. Journal of China Coal Society, 1994, 19(6): 557-563. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB406.000.htm
    [6] 钱鸣高, 缪协兴. 采场上覆岩层结构的形态与受力分析[J]. 岩石力学与工程学报, 1995, 14(2): 97-106. doi: 10.3321/j.issn:1000-6915.1995.02.006

    Qian Minggao, Miao Xiexing. Theoretical analysis on the structukal form and stability of overlying stkata in longwall mining[J]. Chinese Journal of Rock Mechanics and Engineering, 1995, 14(2): 97-106. doi: 10.3321/j.issn:1000-6915.1995.02.006
    [7] 钱鸣高, 缪协兴, 许家林. 岩层控制中的关键层理论研究[J]. 煤炭学报, 1996, 21(3): 225-230. doi: 10.3321/j.issn:0253-9993.1996.03.001

    Qian Minggao, Miao Xiexing, Xu Jialin. Theoretical study of key stratum in ground control[J]. Journal of China Coal Society, 1996, 21(3): 225-230. doi: 10.3321/j.issn:0253-9993.1996.03.001
    [8] 郭文兵, 白二虎, 赵高博. 高强度开采覆岩地表破坏及防控技术现状与进展[J]. 煤炭学报, 2020, 45(2): 509-523. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202002001.htm

    Guo Wenbing, Bai Erhu, Zhao Gaobo. Current status and progress on overburden and surface damage and prevention technology of high-intensity mining[J]. Journal of China Coal Society, 2020, 45(2): 509-523. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202002001.htm
    [9] 许家林, 钱鸣高. 关键层运动对覆岩及地表移动影响的研究[J]. 煤炭学报, 2000, 25(2): 122-126. doi: 10.3321/j.issn:0253-9993.2000.02.003

    Xu Jialin, Qian Minggao. Study on the influence of key strata movement on subsidence[J]. Journal of China Coal Society, 2000, 25(2): 122-126. doi: 10.3321/j.issn:0253-9993.2000.02.003
    [10] 许家林, 钱鸣高, 朱卫兵. 覆岩主关键层对地表下沉动态的影响研究[J]. 岩石力学与工程学报, 2005, 24(5): 787-791. doi: 10.3321/j.issn:1000-6915.2005.05.009

    Xu Jialin, Qian Minggao, Zhu Weibing. Study on influences of primary key stratum on surface dynamic subsidence[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(5): 787-791. doi: 10.3321/j.issn:1000-6915.2005.05.009
    [11] 于斌, 朱卫兵, 高瑞, 等. 特厚煤层综放开采大空间采场覆岩结构及作用机制[J]. 煤炭学报, 2016, 41(3): 571-580. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603008.htm

    Yu Bin, Zhu Weibing, Gao Rui, et al. Strata structure and its effect mechanism of large space stope for fullymechanized sublevel caving mining of extremely thick coal seam[J]. Journal of China Coal Society, 2016, 41(3): 571-580. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603008.htm
    [12] 于斌, 朱卫兵, 李竹, 等. 特厚煤层开采远场覆岩结构失稳机理[J]. 煤炭学报, 2018, 43(9): 2398-2407. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201809004.htm

    Yu Bin, Zhu Weibing, Li Zhu, et al. Mechanism of the instability of strata structure in far field for super-thick coal seam mining[J]. Journal of China Coal Society, 2018, 43(9): 2398-2407. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201809004.htm
    [13] 黄庆享, 杜君武, 侯恩科, 等. 浅埋煤层群覆岩与地表裂隙发育规律和形成机理研究[J]. 采矿与安全工程学报, 2019, 36(1): 7-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201901002.htm

    Huang Qingxiang, Du Junwu, Hou Enke, et al. Research on overburden and ground surface cracks distribution and formation mechanism in shallow coal seams group mining[J]. Journal of Mining & Safety Engineering, 2019, 36(1): 7-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201901002.htm
    [14] Huang Q X, He Y P. Research on overburden movement characteristics of large mining height working face in shallow buried thin bedrock[J]. Energies, 2019, 12(21): 4208.
    [15] 左建平, 孙运江, 钱鸣高. 厚松散层覆岩移动机理及"类双曲线"模型[J]. 煤炭学报, 2017, 42(6): 1372-1379. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201706003.htm

    Zuo Jianping, Sun Yunjiang, Qian Minggao. Movement mechanism and analogous hyperbola model of overlying strata with thick alluvium[J]. Journal of China Coal Society, 2017, 42(6): 1372-1379. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201706003.htm
    [16] 左建平, 孙运江, 王金涛, 等. 充分采动覆岩"类双曲线"破坏移动机理及模拟分析[J]. 采矿与安全工程学报, 2018, 35(1): 71-77. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201801011.htm

    Zuo Jianping, Sun Yunjiang, Wang Jintao, et al. Mechanical and numerical analysis of "analogous hyperbola" movement of overlying strata after full mining extraction[J]. Journal of Mining & Safety Engineering, 2018, 35(1): 71-77. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201801011.htm
    [17] 左建平, 孙运江, 文金浩, 等. 岩层移动理论与力学模型及其展望[J]. 煤炭科学技术, 2018, 46(1): 1-11, 87. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201801001.htm

    Zuo Jianping, Sun Yunjiang, Wen Jinhao, et al. Theoretical and mechanical models of rock strata movement and their prospects[J]. Coal Science and Technology, 2018, 46(1): 1-11, 87. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201801001.htm
    [18] Sun Y J, Zuo J P, Karakus M, et al. A novel method for predicting movement and damage of overburden caused by shallow coal mining[J]. Rock Mechanics and Rock Engineering, 2020, 53(4): 1545-1563.
    [19] Sun Y J, Zuo J P, Karakus M, et al. Investigation of movement and damage of integral overburden during shallow coal seam mining[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 117: 63-75.
    [20] 孙运江. 采动覆岩破断移动机理及"类双曲线"模型研究[D]. 北京: 中国矿业大学(北京), 2019.
    [21] 左建平, 吴根水, 孙运江, 等. 岩层移动内外"类双曲线"整体模型研究[J]. 煤炭学报, 2021, 46(2): 333-343. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202102002.htm

    Zuo Jianping, Wu Genshui, Sun Yunjiang, et al. Investigation on the inner and outer analogous hyperbola model(AHM)of strata movement[J]. Journal of China Coal Society, 2021, 46(2): 333-343. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202102002.htm
    [22] 刘宝琛, 廖国华. 煤矿地表移动的基本规律[M]. 北京: 中国工业出版社, 1965.
    [23] 邓喀中, 马伟民. 开采沉陷中的岩体节理效应[J]. 岩石力学与工程学报, 1996, 15(4): 345-352. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX604.006.htm

    Deng Kazhong, Ma Weimin. Effect of rockmass joints on mining subsidence[J]. Chinese Journal of Rock Mechanics and Engineering, 1996, 15(4): 345-352. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX604.006.htm
    [24] 杨伦, 戴华阳. 关于我国采煤沉陷计算方法的思考[J]. 煤矿开采, 2016, 21(2): 7-9, 102. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201602003.htm

    Yang Lun, Dai Huayang. Thoughts of calculation method of coal mining subsidence in home[J]. Coal Mining Technology, 2016, 21(2): 7-9, 102. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201602003.htm
    [25] 黄庆享. 浅埋煤层保水开采岩层控制研究[J]. 煤炭学报, 2017, 42(1): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701007.htm

    Huang Qingxiang. Research on roof control of water conservation mining in shallow seam[J]. Journal of China Coal Society, 2017, 42(1): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701007.htm
    [26] 左建平, 陈忠辉, 王怀文, 等. 深部煤矿采动诱发断层活动规律[J]. 煤炭学报, 2009, 34(3): 305-309. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200903004.htm

    Zuo Jianping, Chen Zhonghui, Wang Huaiwen, et al. Experimental investigation on fault activation pattern under deep mining[J]. Journal of China Coal Society, 2009, 34(3): 305-309. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200903004.htm
    [27] 左建平, 于美鲁, 胡顺银, 等. 不同厚度岩层破断模式实验研究[J]. 采矿与岩层控制工程学报, 2019, 1(2): 88-96. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201902008.htm

    Zuo Jianping, Yu Meilu, Hu Shunyin, et al. Experimental investigation on fracture mode of different thick rock strata[J]. Journal of Mining and Strata Control Engineering, 2019, 1(2): 88-96. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201902008.htm
    [28] Zuo J P, Yu M L, Li C Y, et al. Analysis of surface cracking and fracture behavior of a single thick main roof based on similar model experiments in western coal mine, China[J]. Natural Resources Research, 2021, 30(1): 657-680.
    [29] 徐芝纶. 弹性力学简明教程[M]. 4版. 北京: 高等教育出版社, 2013.
    [30] 吴作启. 薄基岩厚松散含水层采煤工作面溃水溃砂机理及灾害防治技术研究[D]. 北京: 中国矿业大学(北京), 2018.
    [31] 曹健, 黄庆享. 浅埋近距煤层开采覆岩与地表裂缝发育规律及控制[J]. 煤田地质与勘探, 2021, 49(4): 213-220. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202104026.htm

    Cao Jian, Huang Qingxiang. Regularity and control of overburden and surface fractures in shallow-contiguous seams[J]. Coal Geology & Exploration, 2021, 49(4): 213-220. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202104026.htm
    [32] 王军, 赵欢欢, 刘晶歌. 薄基岩浅埋煤层工作面地表动态移动规律研究[J]. 矿业安全与环保, 2016, 43(1): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER201601006.htm

    Wang Jun, Zhao Huanhuan, Liu Jingge. Study on dynamic law of surface movement above working face of shallow-buried coal seam with thin bedrock[J]. Mining Safety & Environmental Protection, 2016, 43(1): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER201601006.htm
    [33] 李建伟. 西部浅埋厚煤层高强度开采覆岩导气裂缝的时空演化机理及控制研究[D]. 徐州: 中国矿业大学, 2017.
    [34] 李圣军. 哈拉沟煤矿高强度开采覆岩与地表破坏特征研究[D]. 焦作: 河南理工大学, 2015.
    [35] 吕林根, 许子道. 解析几何[M]. 4版. 北京: 高等教育出版社, 2006.
    [36] Wang S F, Li X B, Wang S Y. Separation and fracturing in overlying strata disturbed by longwall mining in a mineral deposit seam[J]. Engineering Geology, 2017, 226: 257-266.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  529
  • HTML全文浏览量:  116
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-01
  • 修回日期:  2022-09-20
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回