留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数字分形原理的矿区粉尘时空分布与防治技术

赵洪宝 刘绍强 康钦容 李岳 蒋冬梅 吴桐

赵洪宝, 刘绍强, 康钦容, 李岳, 蒋冬梅, 吴桐. 基于数字分形原理的矿区粉尘时空分布与防治技术[J]. 矿业科学学报, 2022, 7(6): 710-719. doi: 10.19606/j.cnki.jmst.2022.06.008
引用本文: 赵洪宝, 刘绍强, 康钦容, 李岳, 蒋冬梅, 吴桐. 基于数字分形原理的矿区粉尘时空分布与防治技术[J]. 矿业科学学报, 2022, 7(6): 710-719. doi: 10.19606/j.cnki.jmst.2022.06.008
Zhao Hongbao, Liu Shaoqiang, Kang Qinrong, Li Yue, Jiang Dongmei, Wu Tong. Temporal and spatial distribution and prevention of dust in mining area based on digital fractal principle[J]. Journal of Mining Science and Technology, 2022, 7(6): 710-719. doi: 10.19606/j.cnki.jmst.2022.06.008
Citation: Zhao Hongbao, Liu Shaoqiang, Kang Qinrong, Li Yue, Jiang Dongmei, Wu Tong. Temporal and spatial distribution and prevention of dust in mining area based on digital fractal principle[J]. Journal of Mining Science and Technology, 2022, 7(6): 710-719. doi: 10.19606/j.cnki.jmst.2022.06.008

基于数字分形原理的矿区粉尘时空分布与防治技术

doi: 10.19606/j.cnki.jmst.2022.06.008
基金项目: 

教育部工程研究中心开放基金 LKF202001

越崎杰出学者 800015Z1179

国家自然科学基金青年 51804222

河北省生态智慧矿山联合基金 E2020402036

详细信息
    作者简介:

    赵洪宝(1980—),男,山东德州人,教授,博士生导师,主要从事矿山岩体力学等方面的教学与研究工作。Tel:13426079538,E-mail:hongbaozhao@126.com

    通讯作者:

    刘绍强(1996—),男,云南曲靖人,博士研究生,主要从事矿山岩体力学等方面的研究工作。Tel:18810000847,E-mail:liushaoqiangcumtb@126.com

  • 中图分类号: TD714

Temporal and spatial distribution and prevention of dust in mining area based on digital fractal principle

  • 摘要: 为减少露天煤矿粉尘弥散对矿区环境及人员、设备的危害,本文以河曲露天煤矿为工程背景,开展了露天煤矿粉尘运移、分布及治理研究。结果表明:①利用现场监测手段分析了不同区域的粉尘浓度变化情况,确定了露天煤矿产尘主要区域。②将分形维数引入粉尘的运移和分布当中,研究了粉尘粒径、风速与分形维数之间的相互关系。③以高分子材料为主体进行化学抑尘剂的配比研究,研发了一种清洁高效、低成本的化学抑尘剂,该化学抑尘剂对于粉尘颗粒具有较好的捕捉效果并且能够在喷洒后形成薄膜防止二次起尘。
  • 图  1  监测布置示意图

    Figure  1.  Schematic diagram of monitoring layout

    图  2  各监测点监测内容浓度曲线

    Figure  2.  Concentration curve of monitoring contents at each monitoring point

    图  3  粉尘粒径与分形维数关系

    Figure  3.  Relationship between dust particle size and fractal dimension

    图  4  风速与分形维数关系

    Figure  4.  Relationship between wind speed and fractal dimension

    图  5  5种化学抑尘剂考核指标对比

    Figure  5.  Comparison of assessment indexes of five chemical dust inhibitors

    图  6  化学抑尘剂喷淋前后及固结成膜效果对比

    Figure  6.  Comparison of effects of chemical dust inhibitor before and after spraying and consolidation film formation

    表  1  正交试验因素水平设计

    Table  1.   Orthogonal experimental factor level design %

    水平 聚乙烯醇A 可溶性淀粉B 表面活性剂C 成膜助剂D
    1 2 0.5 1 1
    2 4 0.7 2 1.5
    3 6 0.9 3 2
    下载: 导出CSV

    表  2  正交试验设计

    Table  2.   Orthogonal experimental design %

    试验方案 聚乙烯醇A 可溶性淀粉B 表面活性剂C 成膜助剂D
    1 2 0.5 1 1
    2 2 0.7 2 1.5
    3 2 0.9 3 2
    4 4 0.5 2 2
    5 4 0.7 3 1
    6 4 0.9 1 1.5
    7 6 0.5 3 1.5
    8 6 0.7 1 2
    9 6 0.9 2 1
    下载: 导出CSV

    表  3  化学抑尘剂考核指标测定结果

    Table  3.   Test results of assessment indicators of chemical dust inhibitor

    编号 聚乙烯醇A 可溶性淀粉B 表面活性剂C 成膜助剂D 失水率/% 抑尘率/% 表面张力/(mN·m-1) 渗透性/(mm·h-1) 黏度/(mPa·s)
    1 2 0.5 1 1.0 95 83 18.6 46.3 252.47
    2 2 0.7 2 1.5 92 86 19.1 44.8 266.24
    3 2 0.9 3 2.0 87 87 21.8 43.2 283.54
    4 4 0.5 2 2.0 90 91 20.3 44.5 270.81
    5 4 0.7 3 1.0 85 93 22.1 43.6 286.92
    6 4 0.9 1 1.5 83 90 24.6 40.2 310.24
    7 6 0.5 3 1.5 84 89 24.3 43.1 360.27
    8 6 0.7 1 2.0 83 92 25.7 40.8 396.54
    9 6 0.9 2 1.0 80 90 26.4 38.7 437.62
    下载: 导出CSV

    表  4  4种因素在3种水平下对应的K值及R

    Table  4.   Corresponding K value and R value of 4 factors at the level of 3

    Kn-mRn 聚乙烯醇A 可溶性淀粉B 表面活性剂C 成膜助剂D Kn-mRn 聚乙烯醇A 可溶性淀粉B 表面活性剂C 成膜助剂D
    K1-1 274 269 261 260 K3-3 76.4 72.8 68.20 67.80
    K1-2 258 260 262 259 R3 6.9 5.9 2.90 0.90
    K1-3 247 250 256 260 K4-1 134.3 133.9 127.30 128.60
    R1 27 19 6 1 K4-2 128.3 129.2 128.00 128.10
    K2-1 256 263 265 266 K4-3 122.6 122.1 129.90 128.50
    K2-2 274 271 267 265 R4 11.7 11.8 2.60 0.10
    K2-3 271 267 269 270 K5-1 802.25 883.55 1 000.33 977.01
    R2 18 8 4 5 K5-2 867.97 949.7 974.67 936.75
    K3-1 59.5 63.2 68.9 67.1 K5-3 1 194.43 1 031.4 930.73 950.89
    K3-2 67 66.9 65.8 68 R5 392.18 1 47.85 69.60 40.26
    下载: 导出CSV

    表  5  化学抑尘剂各考核指标最优方案

    Table  5.   Optimal scheme for each assessment index of chemical dust inhibitor

    编号 实验方案 化学抑尘剂成分及质量分数/%
    聚乙烯醇 可溶性淀粉 马来酸 硫酸盐 表面活性剂 成膜助剂
    1 A1B1C2D1 2 0.5 3 1 2 1.0
    2 A1B1C3D1 2 0.5 3 1 3 1.0
    3 A2B2C2D3 4 0.7 6 2 2 2.0
    4 A2B2C3D3 4 0.7 6 2 3 2.0
    5 A3B3C3D2 6 0.9 9 3 3 1.5
    下载: 导出CSV
  • [1] 姬长生. 我国露天煤矿开采工艺发展状况综述[J]. 采矿与安全工程学报, 2008, 25(3): 297-300. doi: 10.3969/j.issn.1673-3363.2008.03.010

    Ji Changsheng. On development of surface coal min-ing systems in China[J]. Journal of Mining & Safety Engineering, 2008, 25(3): 297-300. doi: 10.3969/j.issn.1673-3363.2008.03.010
    [2] 佟瑞鹏, 崔鹏程, 杨校毅, 等. 基于蒙特卡洛方法的煤矿粉尘健康损害不确定性分析[J]. 矿业科学学报, 2017, 2(5): 467-474. http://kykxxb.cumtb.edu.cn/article/id/97

    Tong Ruipeng, Cui Pengcheng, Yang Xiaoyi, et al. Uncertainty analysis of health damage of coal mine dust using the Monte Carlo method[J]. Journal of Mi-ning Science and Technology, 2017, 2(5): 467-474. http://kykxxb.cumtb.edu.cn/article/id/97
    [3] Ghose M M S. Assessment of dust generation due to opencast coal mining-an indian case study[J]. Env-ironmental Monitoring and Assessment. 2000, 61(2): 255-263.
    [4] Silvester S. A, Lowndes I. S, Hargreaves D.M. A. Computational study of particulate emissions from an open pit quarry under neutral atmospheric conditions[J]. Atmospheric Environment, 2009, 43(40): 6415-6424. doi: 10.1016/j.atmosenv.2009.07.006
    [5] 陈举师, 姜兰, 蒋仲安. 边坡钻孔作业中粉尘分布及其影响因素的数值模拟[J]. 工程科学学报, 2015, 22(6): 685-692. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201506002.htm

    Chen Jushi, Jiang Lan, Jiang Zhongan. Numerical simul-ation of dust distribution and influencing factors in slope drilling[J]. Chinese Journal of Engineering, 2015, 22(6): 685-692. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201506002.htm
    [6] 蒋仲安, 姜兰, 陈举师. 露天矿潜孔打钻粉尘浓度分布规律数值模拟[J]. 深圳大学学报: 理工版, 2013, 30(3): 313-318. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201303018.htm

    Jiang Zhongan, Jiang Lan, Chen Jushi. Numerical simu-lation of dust concentration distribution regularities ofdown-the-hole drilling in open-pit mine[J]. Journal of Shenzhen University: Science and Engineering, 2013, 30(3): 313-318. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201303018.htm
    [7] 董志文, 秦大河, 陈记祖, 等. 粉尘颗粒物对祁连山老虎沟冰川融水理化性质的影响[J]. 水科学进展, 2014, 25(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201402008.htm

    Dong Zhiwen, Qin Dahe, Chen Jizu, et al. Dust influenc-es on alpine glacier meltwater in Laohugou glacier basin of western Qilian Mountains[J]. Advances in Water Science, 2014, 25(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201402008.htm
    [8] 张明浩, 赵廷宁, 肖辉杰. 内蒙古乌海粉尘浓度时空分布及影响因素探析[J]. 地学前缘, 2021, 28(4): 118-130. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202104018.htm

    Zhang Minghao, Zhao Tingning, Xiao Huijie. Temporos-patial distribution and influencing factor analysis of dust concentration in Wuhai, Inner Mongolia[J]. Earth Science Frontiers, 2021, 28(4): 118-130. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202104018.htm
    [9] 韩桂波, 詹水芬, 张晓春, 等. 煤炭粉尘颗粒起动风速影响因素及数学模型[J]. 煤炭学报, 2009, 34(10): 1359-1363. doi: 10.3321/j.issn:0253-9993.2009.10.012

    Han Guibo, Zhan Shuifen, Zhang Xiaochun, et al. Influ-ence factors and mathematical model of coal dust particles threshold velocity[J]. Journal of China Coal Society, 2009, 34(10): 1359-1363. doi: 10.3321/j.issn:0253-9993.2009.10.012
    [10] 谢振华, 李晓超. 露天矿山运输路面复合抑尘剂的研究[J]. 北京科技大学学报, 2012, 34(11): 1240-1244. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201211002.htm

    Xie Zhenhua, Li Xiaochao. Research on complex dust suppressants for transport roadways in open mines[J]. Journal of University of Science and Technology Beijing, 2012, 34(11): 1240-1244. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201211002.htm
    [11] 杨树莹, 周磊, 杨林军, 等. 高分子抑尘剂对褐煤矿场细颗粒物的抑制特性[J]. 煤炭学报, 2019, 44(2): 528-535. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201902021.htm

    Yang Shuying, Zhou Lei, Yang Linjun, et al. Inhibition characteristics of polymer suppressant on fine partic-les in lignite mines[J]. Journal of China Coal Society, 2019, 44(2): 528-535. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201902021.htm
    [12] Xi Z L, Feng Z Y, Li A. Synergistic coal dust controlusing aqueous solutions of thermoplastic powder and anionic surfactant[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520: 864-871.
    [13] Medeiros Miguel A., Leite Carla M. M, Lago Rochel M. Use of glycerol by-product of biodiesel to produ-ce an efficient dust suppressant[J]. Chemical Engineer-ing Journal, 2012, 180: 364-369.
    [14] 罗瑞冬, 林木松, 罗运柏, 等. 新型煤尘抑尘剂的制备及特性[J]. 煤炭学报. 2016, 41(S2): 454-459. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2016S2024.htm

    Luo Ruidong, Lin Musong, Luo Yunbai, et al. Preparation and properties of a new type of coal dust su-ppressant[J]. Journal of China Coal Society, 2016, 41(S2): 454-459. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2016S2024.htm
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  303
  • HTML全文浏览量:  80
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-25
  • 修回日期:  2022-03-28
  • 刊出日期:  2022-12-31

目录

    /

    返回文章
    返回