留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

致密砂岩Ⅰ型断裂行为的温度效应研究

陈立超 吕帅锋 张典坤

陈立超, 吕帅锋, 张典坤. 致密砂岩Ⅰ型断裂行为的温度效应研究[J]. 矿业科学学报, 2022, 7(6): 700-709. doi: 10.19606/j.cnki.jmst.2022.06.007
引用本文: 陈立超, 吕帅锋, 张典坤. 致密砂岩Ⅰ型断裂行为的温度效应研究[J]. 矿业科学学报, 2022, 7(6): 700-709. doi: 10.19606/j.cnki.jmst.2022.06.007
Chen Lichao, Lü Shuaifeng, Zhang Diankun. Temperature effect on mode Ⅰ fracture behavior of tight sandstone[J]. Journal of Mining Science and Technology, 2022, 7(6): 700-709. doi: 10.19606/j.cnki.jmst.2022.06.007
Citation: Chen Lichao, Lü Shuaifeng, Zhang Diankun. Temperature effect on mode Ⅰ fracture behavior of tight sandstone[J]. Journal of Mining Science and Technology, 2022, 7(6): 700-709. doi: 10.19606/j.cnki.jmst.2022.06.007

致密砂岩Ⅰ型断裂行为的温度效应研究

doi: 10.19606/j.cnki.jmst.2022.06.007
基金项目: 

国家科技重大专项 2016ZX05067001-007

内蒙古自治区科技计划项目 2020GG0317

山西省煤层气联合研究基金 2016012007

详细信息
    作者简介:

    陈立超(1985—),男,内蒙古赤峰人,博士,副教授,主要从事非常规油气储层压裂岩石力学方面的研究工作。Tel:15871795587, E-mail:chenlichaogas@163.com

  • 中图分类号: TE32, TU45

Temperature effect on mode Ⅰ fracture behavior of tight sandstone

  • 摘要: 致密砂岩裂缝复杂程度对于提升致密气储层压裂改造效率、增大资源动用程度具有实际意义。本文利用三点弯曲加载手段结合SEM分析对致密砂岩半圆弯曲(SCB)试样在室温、液氮低温条件下的力学特性、断裂行为、断裂路径规律及断裂能特征进行表征,讨论液氮低温作用下的致密砂岩预裂机制。研究结果表明:①液氮低温处理后致密砂岩试样断裂荷载、断裂韧度较室温状态均明显降低,而层理平行加载方位试样上参数略有增大,推测与液氮低温对层理面增强有关;②液氮低温处理后试样裂缝扩展路径复杂度提升,裂缝条数增多并出现裂缝分叉汇聚等现象,液氮预裂对致密砂岩断裂复杂度提升效果显著;③液氮预裂后致密砂岩断裂能显著降低,最大降幅达46.98 %;④室温下致密砂岩断裂路径主要沿矿物晶界发展,形成沿晶裂缝,岩石改造程度低;液氮低温处理后砂岩试样以沿晶断裂、穿晶断裂及颗粒断裂形成复杂裂缝形式,促进了穿晶裂缝与复杂缝网形成。综上,致密砂岩储层压裂中低温预处理能有效降低储层破裂压力,实现裂缝端部岩石韧-脆转换,提升压裂裂缝复杂程度。
  • 图  1  致密砂岩半圆弯曲试样制备

    Figure  1.  Preparation of tight sandstone SCB sample

    图  2  试样液氮低温预处理

    Figure  2.  Low-temperature treatment of samples

    图  3  三点弯加载试验

    Figure  3.  Three-point bending loading test

    图  4  不同层理方向致密砂岩半圆弯曲试样加载位移-荷载曲线

    Figure  4.  Displacement-load curves of tight sandstone SCB samples with different bedding directions

    图  5  不同层理方向致密砂岩试样断裂韧度与断裂速率特征

    Figure  5.  Characteristics of fracture toughness and fracture propagation rates of tight sandstone samples with different bedding orientation

    图  6  不同层理方位致密砂岩试样断裂特征与破坏模式

    Figure  6.  Fracture characteristics and failure modes of tight sandstone samples with different bedding orientation

    图  7  试样压缩过程断裂能计算原理

    Figure  7.  Calculation principle of fracture energy during compression of sample

    图  8  不同层理倾角致密砂岩试样断裂能量计算结果

    Figure  8.  Fracture energy of tight sandstone samples with different bedding orientation

    图  9  低温条件下致密砂岩微观断裂机制

    Figure  9.  Microscopic fracture mechanism of tight sandstone under low temperature

  • [1] 王继平, 张城玮, 李建阳, 等. 苏里格气田致密砂岩气藏开发认识与稳产建议[J]. 天然气工业, 2021, 41(2): 100-110. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202102017.htm

    Wang Jiping, Zhang Chengwei, Li Jianyang, et al. Tight sandstone gas reservoirs in the Sulige Gas Field: development understandings and stable-production proposals[J]. Natural Gas Industry, 2021, 41(2): 100-110. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202102017.htm
    [2] 郑有成, 韩旭, 曾冀, 等. 川中地区秋林区块沙溪庙组致密砂岩气藏储层高强度体积压裂之路[J]. 天然气工业, 2021, 41(2): 92-99. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202102016.htm

    Zheng Youcheng, Han Xu, Zeng Ji, et al. Practice of high-intensity volume fracturing in the Shaximiao Formation tight sandstone gas reservoirs of the Qiulin Block, Central Sichuan Basin[J]. Natural Gas Industry, 2021, 41(2): 92-99. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202102016.htm
    [3] 刘洪涛, 刘举, 刘会锋, 等. 塔里木盆地超深层油气藏试油与储层改造技术进展及发展方向[J]. 天然气工业, 2020, 40(11): 76-88. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202011014.htm

    Liu Hongtao, Liu Ju, Liu Huifeng, et al. Progress and development direction of production test and reservoir stimulation technologies for ultra-deep oil and gas reservoirs in Tarim Basin[J]. Natural Gas Industry, 2020, 40(11): 76-88. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202011014.htm
    [4] 李进步, 白建文, 朱李安, 等. 苏里格气田致密砂岩气藏体积压裂技术与实践[J]. 天然气工业, 2013, 33(9): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201309014.htm

    Li Jinbu, Bai Jianwen, Zhu Lian, et al. Volume fracturing and its practices in Sulige tight sandstone gas reservoirs, Ordos Basin[J]. Natural Gas Industry, 2013, 33(9): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201309014.htm
    [5] 郭建春, 苟波. 非对称3D压裂和裂缝无序性压裂设计理念与实践: 以四川盆地川西致密砂岩气藏为例[J]. 天然气工业, 2015, 35(1): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201501012.htm

    Guo Jianchun, Gou Bo. Design philosophy and practices of asymmetrically 3D fracturing and the fracturing inducing a random array of fractures: a case study of tight sand gas reservoirs in western Sichuan Basin[J]. Natural Gas Industry, 2015, 35(1): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201501012.htm
    [6] 蒋平, 穆龙新, 张铭, 等. 中石油国内外致密砂岩气储层特征对比及发展趋势[J]. 天然气地球科学, 2015, 26(6): 1095-1105. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201506011.htm

    Jiang Ping, Mu Longxin, Zhang Ming, et al. Differences of reservoir characteristics between domestic and oversea tight gas of CNPC and its developing trends[J]. Natural Gas Geoscience, 2015, 26(6): 1095-1105. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201506011.htm
    [7] 张矿生, 唐梅荣, 王成旺, 等. 致密砂岩储层抗拉强度评价方法研究[J]. 地球物理学进展, 2021, 36(1): 318-324. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202101035.htm

    Zhang Kuangsheng, Tang Meirong, Wang Chengwang, et al. Study on prediction method of tensile strength for tight sandstone formation[J]. Progress in Geophysics, 2021, 36(1): 318-324. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202101035.htm
    [8] 周文, 高雅琴, 单钰铭, 等. 川西新场气田沙二段致密砂岩储层岩石力学性质[J]. 天然气工业, 2008, 28(2): 34-37, 163. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200802012.htm

    Zhou Wen, Gao Yaqin, Shan Yuming, et al. Lithomechanical property of tight sand reservoirs in the second member of shaximiao formation in Xinchang gas field, west Sichuan Basin[J]. Natural Gas Industry, 2008, 28(2): 34-37, 163. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200802012.htm
    [9] 杨建, 康毅力, 王业众, 等. 裂缝性致密砂岩储层气体传质实验[J]. 天然气工业, 2010, 30(10): 39-41, 117. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201010012.htm

    Yang Jian, Kang Yili, Wang Yezhong, et al. An experimental study of gas mass-transfer for fractured tight sand gas reservoirs[J]. Natural Gas Industry, 2010, 30(10): 39-41, 117. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201010012.htm
    [10] 魏元龙, 杨春和, 郭印同, 等. 须家河组致密砂岩水力压裂裂缝形态的试验研究[J]. 岩石力学与工程学报, 2016, 35(S1): 2720-2731. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1016.htm

    Wei Yuanlong, Yang Chunhe, Guo Yintong, et al. Experimental study on hydraulic fracture geometry of tight sandstone from Xujiahe group[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1): 2720-2731. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1016.htm
    [11] 李帅, 丁云宏, 顾岱鸿, 等. 考虑渗吸效应的致密油藏体积改造可行性分析[J]. 地质科技情报, 2017, 36(6): 245-250. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201706028.htm

    Li Shuai, Ding Yunhong, Gu Daihong, et al. Application of imbibition mechanism in massive fracturing of tight oil reservoir[J]. Geological Science and Technology Information, 2017, 36(6): 245-250. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201706028.htm
    [12] 车明光, 王永辉, 彭建新, 等. 深层—超深层裂缝性致密砂岩气藏加砂压裂技术: 以塔里木盆地大北、克深气藏为例[J]. 天然气工业, 2018, 38(8): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201808013.htm

    Che Mingguang, Wang Yonghui, Peng Jianxin, et al. Sand fracturing technologies for deep and ultra-deep fractured tight sandstone gas reservoirs: a case study of Dabei and Keshen gas reservoirs in the Tarim Basin[J]. Natural Gas Industry, 2018, 38(8): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201808013.htm
    [13] 赵欢, 李玮, 强小军, 等. 致密砂岩储层多裂缝扩展形态及影响因素[J]. 东北石油大学学报, 2020, 44(5): 76-81, 122, 9. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY202005008.htm

    Zhao Huan, Li Wei, Qiang Xiaojun, et al. Fracture morphology and the influence factors of multi-fracture propagation in tight sand reservoir[J]. Journal of Northeast Petroleum University, 2020, 44(5): 76-81, 122, 9. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY202005008.htm
    [14] Wang L, Yao B W, Cha M S, et al. Waterless fracturing technologies for unconventional reservoirs-opportunities for liquid nitrogen[J]. Journal of Natural Gas Science and Engineering, 2016, 35: 160-174.
    [15] Cai C Z, Li G S, Huang Z W, et al. Experimental study of the effect of liquid nitrogen cooling on rock pore structure[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 507-517.
    [16] 黄中伟, 位江巍, 李根生, 等. 液氮冻结对岩石抗拉及抗压强度影响试验研究[J]. 岩土力学, 2016, 37(3): 694-700, 834. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603012.htm

    Huang Zhongwei, Wei Jiangwei, Li Gensheng, et al. An experimental study of tensile and compressive strength of rocks under cryogenic nitrogen freezing[J]. Rock and Soil Mechanics, 2016, 37(3): 694-700, 834. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603012.htm
    [17] Zhao B, Zhang G Q, Zhao P Y, et al. Experimental study of mechanics and seepage characteristics of sandstones after liquid-nitrogen stimulation[J]. Journal of Natural Gas Science and Engineering, 2017, 47: 11-21.
    [18] Du M L, Gao F, Cai C Z, et al. Study on the surface crack propagation mechanism of coal and sandstone subjected to cryogenic cooling with liquid nitrogen[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103436.
    [19] Li Q, Yin T B, Li X B, et al. Effects of rapid cooling treatment on heated sandstone: a comparison between water and liquid nitrogen cooling[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(1): 313-327.
    [20] Cai C Z, Tao Z X, Ren K D, et al. Experimental investigation on the breakdown behaviours of sandstone due to liquid nitrogen fracturing[J]. Journal of Petroleum Science and Engineering, 2021, 200: 108386.
    [21] Kuruppu M D, Chong K P. Fracture toughness testing of brittle materials using semi-circular bend (SCB)specimen[J]. Engineering Fracture Mechanics, 2012, 91: 133-150.
    [22] 陈立超, 王生维. 煤岩断裂力学性质对储层压裂改造的影响[J]. 天然气地球科学, 2020, 31(1): 122-131. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202001012.htm

    Chen Lichao, Wang Shengwei. Fracture properties of high-rank coal and its constraint on hydraulic fracturing stimulation of coal reservoir[J]. Natural Gas Geoscience, 2020, 31(1): 122-131. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202001012.htm
    [23] 李斌, 黄达, 马文著. 层理面特性对砂岩断裂力学行为的影响研究[J]. 岩土力学, 2020, 41(3): 858-868. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003016.htm

    Li Bin, Huang Da, Ma Wenzhu. Study on the influence of bedding plane on fracturing behavior of sandstone[J]. Rock and Soil Mechanics, 2020, 41(3): 858-868. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003016.htm
    [24] 孙友杰, 戚承志, 朱华挺, 等. 岩石动态断裂过程的能量分析[J]. 地下空间与工程学报, 2020, 16(1): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202001006.htm

    Sun Youjie, Qi Chengzhi, Zhu Huating, et al. Energy analysis on rock dynamic fracture process[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(1): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202001006.htm
    [25] 易婷, 唐建新, 王艳磊. 裂隙倾角及数目对岩体强度和破坏模式的影响[J]. 地下空间与工程学报, 2021, 17(1): 98-106, 134. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202101011.htm

    Yi Ting, Tang Jianxin, Wang Yanlei. Effect of fracture dip angle and number on mechanical properties and failure modes of rock mass[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(1): 98-106, 134. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202101011.htm
  • 加载中
图(9)
计量
  • 文章访问数:  178
  • HTML全文浏览量:  103
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-04
  • 修回日期:  2022-03-11
  • 刊出日期:  2022-12-31

目录

    /

    返回文章
    返回