留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤层气水平井钻井工程因素对煤粉产出影响的数值模拟——以柳林区块为例

魏迎春 王亚东 张劲 王安民 孟涛

魏迎春, 王亚东, 张劲, 王安民, 孟涛. 煤层气水平井钻井工程因素对煤粉产出影响的数值模拟——以柳林区块为例[J]. 矿业科学学报, 2022, 7(6): 670-679. doi: 10.19606/j.cnki.jmst.2022.06.004
引用本文: 魏迎春, 王亚东, 张劲, 王安民, 孟涛. 煤层气水平井钻井工程因素对煤粉产出影响的数值模拟——以柳林区块为例[J]. 矿业科学学报, 2022, 7(6): 670-679. doi: 10.19606/j.cnki.jmst.2022.06.004
Wei Yingchun, Wang Yadong, Zhang Jin, Wang Anmin, Meng Tao. Numerical simulation on the effect of drilling engineering factors on coal fines output in coalbed methane horizontal wells: a case study of Liulin block[J]. Journal of Mining Science and Technology, 2022, 7(6): 670-679. doi: 10.19606/j.cnki.jmst.2022.06.004
Citation: Wei Yingchun, Wang Yadong, Zhang Jin, Wang Anmin, Meng Tao. Numerical simulation on the effect of drilling engineering factors on coal fines output in coalbed methane horizontal wells: a case study of Liulin block[J]. Journal of Mining Science and Technology, 2022, 7(6): 670-679. doi: 10.19606/j.cnki.jmst.2022.06.004

煤层气水平井钻井工程因素对煤粉产出影响的数值模拟——以柳林区块为例

doi: 10.19606/j.cnki.jmst.2022.06.004
基金项目: 

国家自然科学基金 41972174

中央高校基本科研业务费专项资金 2022YJSDC10

详细信息
    作者简介:

    魏迎春(1977—),女,山东巨野人,博士,教授,博士生导师,主要从事煤与煤层气地质、勘探与开发方面的教学和科研工作。Tel:18810538325,E-mail:wyc@cumtb.edu.cn

  • 中图分类号: TE375, P618.13

Numerical simulation on the effect of drilling engineering factors on coal fines output in coalbed methane horizontal wells: a case study of Liulin block

  • 摘要: 煤粉产出是制约煤层气开发的关键因素。影响煤粉产出的因素包括静态和动态因素,钻井工程是动态因素中影响煤粉产出的重要因素之一。以柳林煤层气区块为例,从井壁稳定性角度出发,运用ANSYS软件建立了二维、三维模型,分别模拟了不同钻井方位、钻井液密度、井眼半径、井斜情况下井壁的受力和变形,分析了煤层气水平井钻井工程因素对煤粉产出的影响。研究表明,井眼大小和井斜对煤粉产出的影响较大,而井眼方位和钻井液密度对煤粉产出的影响较小;井眼方位沿最大水平地应力方向时,井周等效应力差值最大,应力集中最明显;钻井液密度过大会导致井壁拉伸破坏;水平井钻进过程中,井眼半径越大、井斜越大,越易产生煤粉。为了减少钻井因素导致的煤粉产生,建议研究区水平井钻进时,井眼方位选择沿最小水平地应力方向,水平段选用清水钻进,水平段井眼倾角尽量与煤层倾角保持一致。研究成果为煤粉管控措施提供参考。
  • 图  1  柳林区块构造纲要图[35]

    Figure  1.  Structural outline of Liulin block[35]

    图  2  二维模型及网格划分

    Figure  2.  2D model and mesh division

    图  3  三维模型及网格划分

    Figure  3.  3D model and mesh division

    图  4  井周等效应力、位移随井周角的变化曲线

    Figure  4.  Variation curves of the equivalent stress and displacement around the well with the angle around the well circumference

    图  5  井眼沿最大、最小及中间水平地应力方向(从左到右)的等效应力和位移云图

    Figure  5.  Equivalent stress and displacement contours of the borehole along the maximum, minimum, and intermediate horizontal in-situ stress directions (from left to right)

    图  6  等效塑性应变随井周角变化曲线

    Figure  6.  Variation curve of equivalent plastic strain with the angle of the well circumference

    图  7  井斜85°、87.5°、90°等效应力和位移云图

    Figure  7.  Equivalent stress and displacement nephogram with well inclination of 85°, 87.5° and 90°

    图  8  等效应力、位移随节点距井眼中心距离变化曲线

    Figure  8.  Curves of equivalent stress and displacement with distance between node and borehole center

    表  1  4号煤层试验井结果数据

    Table  1.   Results from test wells

    试验井编号 试验点深度/m 最小水平地应力/MPa 最大水平地应力/MPa
    ED1 479.32 8.82 12.93
    ED2 862.83 12.11 17.7
    EP2 1 013.59 14.87 21.57
    EP3 710.07 12.48 17.51
    EP5 564.8 8.19 13.08
    下载: 导出CSV

    表  2  4号煤层煤岩力学参数[38]

    Table  2.   Mechanical parameters of coal[38]

    参数 数值
    抗压强度/MPa 9.07
    抗拉强度/MPa 0.28
    弹性模量/GPa 1.04
    泊松比 0.33
    黏聚力/MPa 4.22
    内摩擦角/(°) 37.69
    上覆地层压力/MPa 16.192
    最大水平地应力/MPa 15.17
    最小水平地应力/MPa 10.28
    下载: 导出CSV
  • [1] 魏迎春, 张劲, 曹代勇, 等. 煤层气开发中煤粉问题的研究现状及研究思路[J]. 煤田地质与勘探, 2020, 48(6): 116-124. doi: 10.3969/j.issn.1001-1986.2020.06.016

    Wei Yingchun, Zhang Jin, Cao Daiyong, et al. Research status and thoughts for coal fines during CBM development[J]. Coal Geology & Exploration, 2020, 48(6): 116-124. doi: 10.3969/j.issn.1001-1986.2020.06.016
    [2] Wei Y C, Cao D Y, Yuan Y, et al. Characteristics of pulverized coal during coalbed methane drainage in Hancheng block, Shaanxi Province, China[J]. Energy Exploration & Exploitation, 2013, 31(5): 745-757.
    [3] Zhao X Z, Liu S Q, Sang S X, et al. Characteristics and generation mechanisms of coal fines in coalbed methane wells in the southern Qinshui Basin, China[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 849-863. doi: 10.1016/j.jngse.2016.07.063
    [4] 魏迎春, 曹代勇, 袁远, 等. 韩城区块煤层气井产出煤粉特征及主控因素[J]. 煤炭学报, 2013, 38(8): 1424-1429. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201308022.htm

    Wei Yingchun, Cao Daiyong, Yuan Yuan, et al. Characteristics and controlling factors of pulverized coal during coalbed methane drainage in Hancheng area[J]. Journal of China Coal Society, 2013, 38(8): 1424-1429. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201308022.htm
    [5] 魏迎春, 张傲翔, 姚征, 等. 韩城区块煤层气排采中煤粉产出规律研究[J]. 煤炭科学技术, 2014, 42(2): 85-89. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201402024.htm

    Wei Yingchun, Zhang Aoxiang, Yao Zheng, et al. Research on output laws of pulverized coal during coalbed methane drainage in Hancheng block[J]. Coal Science and Technology, 2014, 42(2): 85-89. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201402024.htm
    [6] 魏迎春, 李超, 曹代勇, 等. 煤层气开发中煤粉产出机理及管控措施[J]. 煤田地质与勘探, 2018, 46(2): 68-73. doi: 10.3969/j.issn.1001-1986.2018.02.011

    Wei Yingchun, Li Chao, Cao Daiyong, et al. The output mechanism and control measures of the pulverized coal in coalbed methane development[J]. Coal Geology & Exploration, 2018, 46(2): 68-73. doi: 10.3969/j.issn.1001-1986.2018.02.011
    [7] Wei Y C, Li C, Cao D Y, et al. New progress on the coal fines affecting the development of coalbed methane[J]. Acta Geologica Sinica-English Edition, 2018, 92(5): 2060-2062. doi: 10.1111/1755-6724.13708
    [8] Shi Z J, Zhao Y Z, Qi H J, et al. Research and application of drilling technology of extended-reach horizontally-intersected well used to extract coalbed methane[J]. Procedia Earth and Planetary Science, 2011, 3: 446-454. doi: 10.1016/j.proeps.2011.09.119
    [9] 孙延明, 张遂安, 杨红军, 等. 影响煤层气钻井工程的工程地质因素分析[J]. 中国煤炭地质, 2016, 28(12): 62-66. doi: 10.3969/j.issn.1674-1803.2016.12.11

    Sun Yanming, Zhang Suian, Yang Hongjun, et al. Analysis of engineering geological factors impacting CBM well drilling engineering[J]. Coal Geology of China, 2016, 28(12): 62-66. doi: 10.3969/j.issn.1674-1803.2016.12.11
    [10] Ju W, Shen J, Qin Y, et al. In-situ stress state in the Linxing region, eastern Ordos Basin, China: implications for unconventional gas exploration and production[J]. Marine and Petroleum Geology, 2017, 86: 66-78. doi: 10.1016/j.marpetgeo.2017.05.026
    [11] Florkowska L. The application of numerical analysis in determining the state of the rock mass around directional wells[J]. Procedia Engineering, 2017, 191: 785-794. doi: 10.1016/j.proeng.2017.05.245
    [12] Aslannezhad M, Keshavarz A, Kalantariasl A. Evaluation of mechanical, chemical, and thermal effects on wellbore stability using different rock failure criteria[J]. Journal of Natural Gas Science and Engineering, 2020, 78: 103276. doi: 10.1016/j.jngse.2020.103276
    [13] Zhang X B, Wang W Y, Yang M. Study on deformation and destabilization characteristics and modes of drainage borehole[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020, 42(19): 2448-2459. doi: 10.1080/15567036.2019.1607944
    [14] 曹代勇, 宁树正, 郭爱军, 等. 中国煤田构造格局及其基本特征[J]. 矿业科学学报, 2016, 1(1): 1-8. http://kykxxb.cumtb.edu.cn/article/id/4

    Cao Daiyong, Ning Shuzheng, Guo Aijun, et al. Basic characteristics of coalfield tectonic framework in China[J]. Journal of Mining Science and Technology, 2016, 1(1): 1-8. http://kykxxb.cumtb.edu.cn/article/id/4
    [15] 冯立杰, 江涛, 岳俊举, 等. 煤层气开采钻井工程关键影响因素识别研究[J]. 煤矿安全, 2018, 49(12): 177-180. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201812045.htm

    Feng Lijie, Jiang Tao, Yue Junju, et al. Identification of key influencing factors of CBM drilling engineering[J]. Safety in Coal Mines, 2018, 49(12): 177-180. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201812045.htm
    [16] 王庆伟, 曹代勇, 王佟. 煤层气裸眼洞穴完井造成的应力集中带与煤粉产出的关系[J]. 煤田地质与勘探, 2013, 41(6): 35-37. doi: 10.3969/j.issn.1001-1986.2013.06.009

    Wang Qingwei, Cao Daiyong, Wang Tong. Relationship between the stress-concentrated zone caused by cavity-completed wells and the coal powder output[J]. Coal Geology & Exploration, 2013, 41(6): 35-37. doi: 10.3969/j.issn.1001-1986.2013.06.009
    [17] Lin H, Kang W H, Oh J, et al. Numerical simulation on borehole breakout and borehole size effect using discrete element method[J]. International Journal of Mining Science and Technology, 2020, 30(5): 623-633. doi: 10.1016/j.ijmst.2020.05.019
    [18] 李宁, 郑何光, 卢俊安, 等. 库车北部构造侏罗系煤层井壁稳定对策研究[J]. 西南石油大学学报: 自然科学版, 2021, 43(4): 26-34. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202104005.htm

    Li Ning, Zheng Heguang, Lu Junan, et al. A study on stabilization strategy of Jurassic coal strata in northern Kuche structural belt[J]. Journal of Southwest Petroleum University: Science & Technology Edition, 2021, 43(4): 26-34 https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202104005.htm
    [19] 李恒, 何世明, 汤明, 等. 塔里木盆地深部煤层失稳机理及防塌钻井液技术[J]. 煤田地质与勘探, 2019, 47(4): 212-218. doi: 10.3969/j.issn.1001-1986.2019.04.032

    Li Heng, He Shiming, Tang Ming, et al. Instability mechanism and anti-sloughing drilling fluid technique for deep coal seam of Tarim Basin[J]. Coal Geology & Exploration, 2019, 47(4): 212-218. doi: 10.3969/j.issn.1001-1986.2019.04.032
    [20] 季长江, 郝春生, 信凯, 等. 煤层气井固井泥浆储层伤害机理研究[J]. 煤炭工程, 2017, 49(11): 116-118, 122.

    Ji Changjiang, Hao Chunsheng, Xin Kai, et al. Study on cementing damage mechanism for reservoir of CBM well[J]. Coal Engineering, 2017, 49(11): 116-118, 122.
    [21] 王之东, 黎立云, 刘一, 等. 型煤模型冲击失稳破坏中能量释放分析[J]. 矿业科学学报, 2018, 3(6): 527-535. http://kykxxb.cumtb.edu.cn/article/id/181

    Wang Zhidong, Li Liyun, Liu Yi, et al. Analysis of energy release in impact instability damage of briquette model[J]. Journal of Mining Science and Technology, 2018, 3(6): 527-535. http://kykxxb.cumtb.edu.cn/article/id/181
    [22] 蔡永博, 王凯, 徐超. 煤岩单体及原生组合体变形损伤特性对比试验研究[J]. 矿业科学学报, 2020, 5(3): 278-283. http://kykxxb.cumtb.edu.cn/article/id/290

    Cai Yongbo, Wang Kai, Xu Chao. Comparative experimental study on deformation and damage characteristics of single coal rock and primary coal-rock combination[J]. Journal of Mining Science and Technology, 2020, 5(3): 278-283. http://kykxxb.cumtb.edu.cn/article/id/290
    [23] 王茂盛, 朱晔, 李永亮, 等. 基于模糊聚类方法的煤巷围岩稳定性分类研究[J]. 矿业科学学报, 2018, 3(3): 238-245. http://kykxxb.cumtb.edu.cn/article/id/143

    Wang Maosheng, Zhu Ye, Li Yongliang, et al. Study on stability classification of surrounding rock of coal gateway based on fuzzy clustering method[J]. Journal of Mining Science and Technology, 2018, 3(3): 238-245. http://kykxxb.cumtb.edu.cn/article/id/143
    [24] Akbarpour M, Abdideh M. Wellbore stability analysis based on geomechanical modeling using finite element method[J]. Modeling Earth Systems and Environment, 2020, 6(2): 617-626.
    [25] Ran X F, Zhang B, Wei W, et al. Reservoir protection and well completion technology for multi-branch horizontal wells in coalbed methane[J]. Arabian Journal of Geosciences, 2021, 14(9): 1-8.
    [26] Lyu S F, Wang S W, Chen X J, et al. Experimental study of a degradable polymer drilling fluid system for coalbed methane well[J]. Journal of Petroleum Science and Engineering, 2019, 178: 678-690.
    [27] Mahmoud H, Hamza A, Nasser M S, et al. Hole cleaning and drilling fluid sweeps in horizontal and deviated wells: comprehensive review[J]. Journal of Petroleum Science and Engineering, 2020, 186: 106748.
    [28] 杜坤, 李秀灵, 王本利, 等. 无黏土水基钻井液在长庆油田米38区块水平井的应用[J]. 钻井液与完井液, 2021, 38(3): 331-336. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYW202103011.htm

    Du Kun, Li Xiuling, Wang Benli, et al. Application of a clay-free low solids water based drilling fluid in block mi-38 in Changqing oilfield[J]. Drilling Fluid & Completion Fluid, 2021, 38(3): 331-336. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYW202103011.htm
    [29] 刘升贵, 彭智高, 李仲力, 等. 煤层气水平分支井稳定性的数值分析[J]. 辽宁工程技术大学学报: 自然科学版, 2015, 34(7): 769-773.

    Liu Shenggui, Peng Zhigao, Li Zhongli, et al. Numerical analysis of coalbed methane horizontal branch well stability[J]. Journal of Liaoning Technical University: Natural Science, 2015, 34(7): 769-773.
    [30] 陈颖杰, 邓传光, 马天寿. 井壁失稳风险的可靠度理论评价方法[J]. 天然气工业, 2019, 39(11): 97-104. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201911021.htm

    Chen Yingjie, Deng Chuanguang, Ma Tianshou. A risk assessment method of wellbore instability based on the reliability theory[J]. Natural Gas Industry, 2019, 39(11): 97-104. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201911021.htm
    [31] 李玉梅, 苏中, 张涛, 等. 欠平衡钻井煤层井壁稳定有限元数值计算研究[J]. 系统仿真学报, 2018, 30(11): 4249-4255. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201811026.htm

    Li Yumei, Su Zhong, Zhang Tao, et al. Numerical simulation of borehole stability in underbalanced drilling coal seam[J]. Journal of System Simulation, 2018, 30(11): 4249-4255. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201811026.htm
    [32] 孙正财, 刘向君, 梁利喜, 等. 煤层气井割理煤岩井壁稳定性影响因素分析[J]. 煤炭科学技术, 2018, 46(4): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201804020.htm

    Sun Zhengcai, Liu Xiangjun, Liang Lixi, et al. Analysis on impact factors of borehole wall stability of coalbed methane well[J]. Coal Science and Technology, 2018, 46(4): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201804020.htm
    [33] 张光福, 何世明, 汤明, 等. 基于3DEC离散元的煤层井壁稳定性[J]. 科学技术与工程, 2020, 20(4): 1367-1373. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202004011.htm

    Zhang Guangfu, He Shiming, Tang Ming, et al. Borehole stability of coal seam based on 3DEC[J]. Science Technology and Engineering, 2020, 20(4): 1367-1373. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202004011.htm
    [34] 张丹丹, 冯雨实, 李永臣, 等. 基于有限元软件的煤层气水平井井壁稳定数值模拟[J]. 煤矿安全, 2018, 49(3): 144-147. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201803039.htm

    Zhang Dandan, Feng Yushi, Li Yongchen, et al. Numerical simulation of wellbore stability for CBM horizontal well by finite element software[J]. Safety in Coal Mines, 2018, 49(3): 144-147. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201803039.htm
    [35] 张劲, 林亮, 魏迎春, 等. 柳林区块煤层气水平井煤粉产出特征及影响因素研究[J]. 中国煤炭地质, 2021, 33(10): 11-16, 70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT202110002.htm

    Zhang Jin, Lin Liang, Wei Yingchun, et al. Study on CBM horizontal well coal fines generation features and impacting factors in Liulin block[J]. Coal Geology of China, 2021, 33(10): 11-16, 70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT202110002.htm
    [36] 孟召平, 蓝强, 刘翠丽, 等. 鄂尔多斯盆地东南缘地应力、储层压力及其耦合关系[J]. 煤炭学报, 2013, 38(1): 122-128. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201301019.htm

    Meng Zhaoping, Lan Qiang, Liu Cuili, et al. In-situ stress and coal reservoir pressure in Southeast margin of Ordos Basin and their coupling relations[J]. Journal of China Coal Society, 2013, 38(1): 122-128. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201301019.htm
    [37] 李勇, 汤达祯, 许浩, 等. 鄂尔多斯盆地柳林地区煤储层地应力场特征及其对裂隙的控制作用[J]. 煤炭学报, 2014, 39(S1): 164-168.

    Li Yong, Tang Dazhen, Xu Hao, et al. Characteristic of in situ stress field in Liulin area, Ordos Basin and its control on coal fractures[J]. Journal of China Coal Society, 2014, 39(S1): 164-168.
    [38] 刘帅帅. 柳林矿区南部煤储层特征及煤层气开发单元划分[D]. 徐州: 中国矿业大学, 2019.
    [39] Guo Y L, Cao L W, Sang S X, et al. CBM drilling technical parameter optimization methodology and software development: a case study of LUAN mining area[J]. Anais Da Academia Brasileira De Ciências, 2021, 93(1): e20190346.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  295
  • HTML全文浏览量:  74
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-07
  • 修回日期:  2022-02-05
  • 刊出日期:  2022-12-31

目录

    /

    返回文章
    返回