留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

断裂滑移型岩爆风险评价和预警方法研究现状

高安森 戚承志 单仁亮

高安森, 戚承志, 单仁亮. 断裂滑移型岩爆风险评价和预警方法研究现状[J]. 矿业科学学报, 2022, 7(6): 643-654. doi: 10.19606/j.cnki.jmst.2022.06.001
引用本文: 高安森, 戚承志, 单仁亮. 断裂滑移型岩爆风险评价和预警方法研究现状[J]. 矿业科学学报, 2022, 7(6): 643-654. doi: 10.19606/j.cnki.jmst.2022.06.001
Gao Ansen, Qi Chengzhi, Shan Renliang. State of the art review of the risk assessment and early warning methods for fault-slip rockburst[J]. Journal of Mining Science and Technology, 2022, 7(6): 643-654. doi: 10.19606/j.cnki.jmst.2022.06.001
Citation: Gao Ansen, Qi Chengzhi, Shan Renliang. State of the art review of the risk assessment and early warning methods for fault-slip rockburst[J]. Journal of Mining Science and Technology, 2022, 7(6): 643-654. doi: 10.19606/j.cnki.jmst.2022.06.001

断裂滑移型岩爆风险评价和预警方法研究现状

doi: 10.19606/j.cnki.jmst.2022.06.001
基金项目: 

国家自然科学基金 12172036

国家自然科学基金 51774018

详细信息
    作者简介:

    高安森(1992—),男,山东临沂人, 博士研究生,主要从事岩石破裂失稳理论和试验等方面的研究工作。Tel:18801297663, E-mail:gaoansen@student.cumtb.edu.cn

    通讯作者:

    戚承志(1965—),男,山东泰安人,博士,教授,主要从事岩石动力学等方面的教学与研究工作。Tel:010-68322492, E-mail:qichengzhi@bucea.edu.cn

  • 中图分类号: TD313

State of the art review of the risk assessment and early warning methods for fault-slip rockburst

  • 摘要: 地下工程需要频繁穿越地质构造区域,断裂滑移型岩爆频发,严重威胁地下工程结构的稳定和安全。为了揭示断裂滑移型岩爆诱发致灾机理,本文系统分析了触发断裂滑移型岩爆的地质构造条件、时空孕育特征、扰动触发机理、风险评价指标和预警方法等。研究结果表明:断裂滑移型岩爆多发生于含软弱结构面或层理面的地质构造带附近,岩体硬性结构面可以在一定程度内控制岩爆爆坑边界;断裂滑移型岩爆在临界失稳触发阶段存在典型的时空前兆特征,声发射(微震)监测参数在临界滑移失稳阶段存在“相对平静期”破坏前兆,红外热像温度存在短暂异常后随即迅速消失的破坏前兆;岩体内部天然层理面等缺陷结构为触发断裂滑移型岩爆提供了地质构造条件,巷道开挖和掘进等为触发断裂滑移型岩爆提供了滑移失稳空间,外界动力扰动等为触发断裂滑移型岩爆提供了诱发条件。
  • 图  1  矿井开采深度与岩爆次数趋势[2]

    Figure  1.  Mining depth and rockburst frequency[2]

    图  2  岩爆类型及分类依据

    Figure  2.  Classification basis and types of rockburst

    图  3  全球地震区域分布(1980—2010)[11]

    Figure  3.  Regional distribution map of global earthquakes from 1980—2010[11]

    图  4  断裂滑移型岩爆实验结果[5]

    Figure  4.  Test results of fault-slip rockburst[5]

    图  5  断裂滑移型岩爆破坏特征及破碎块度[4]

    Figure  5.  Failure characteristics and laboratory fracture fragmentation of fault-slip rockburst[4]

    图  6  矿井岩爆红外热像监测预警系统

    Figure  6.  Infrared thermal image monitoring and early warning system of rockburst

    图  7  矿井岩爆声发射(微震)监测预警系统

    Figure  7.  Acoustic emission (microseismic) monitoring and early warning system of rockburst

    表  1  基于岩石力学指标的岩爆风险评价方法

    Table  1.   Rockburst risk assessment method based on rock mechanic's index

    类型 评价指标 计算公式 岩爆强度类型及指标范围 来源
    无岩爆 弱岩爆 中等岩爆 强烈岩爆
    Ⅰ(能量理论型) 冲击能量指数 $\frac{E_{\mathrm{R}}}{E_{\mathrm{D}}}$ < 1.5 1.5~5 ≥ 5 煤炭行业标准[24]
    弹性应变能指数 $\frac{\sigma_{\mathrm{c}}^2}{2 E_{\mathrm{u}}}$ < 0.2 0.2~0.5 0.5~0.75 ≥0.75 王庆武等[25]
    剩余弹性能指数 Ue-Ua < 50 50~100 150~200 >200 宫凤强等[26]
    能量储耗指数 $\frac{\sigma_{\mathrm{c}}}{\sigma_{\mathrm{t}}} \frac{\varepsilon_{\mathrm{f}}}{\varepsilon_{\mathrm{b}}}$ < 20 20~130 >130 唐礼忠等[27]
    岩爆倾向性指标 $\frac{\varphi_{\mathrm{sa}}}{\varphi_{\mathrm{sc}}} \frac{\varepsilon_{\mathrm{sa}}}{\varepsilon_{\mathrm{sc}}}$ < 10 10~20 >20 殷志强等[28]
    Ⅱ(强度理论型) Russenes强度判据 $\frac{\sigma_\mathtt{θ}}{\sigma_{\mathrm{c}}}$ < 0.2 0.2~0.3 0.3~0.55 ≥0.55 Russenes[29]
    Tao强度判据 $\frac{\sigma_{\mathrm{c}}}{\sigma_1}$ >14.5 5.5~14.5 2.5~5.5 < 2.5 Tao[30]
    谷明成强度判据 $\frac{\sigma_1}{\sigma_{\mathrm{c}}}$ ≤0.15 0.15~0.2 0.2~0.4 ≥0.4 谷明成等[31]
    Turchaninov强度判据 $\frac{\sigma_\mathtt{θ}+\sigma_{\mathrm{r}}}{\sigma_{\mathrm{c}}}$ ≤0.3 0.3~0.5 0.5~0.8 ≥0.8 Turchaninov[32]
    Hawkes强度判据 $\frac{3 \sigma_1}{\sigma_{\mathrm{c}}}$ < 0.2 0.2~0.4 0.4~0.8 0.8~1 Hawkes[33]
    Ⅲ(脆性指数型) Barton脆性判据 $\frac{\sigma_{\mathrm{t}}}{\sigma_{\mathrm{c}}}$ >0.33 0.16~0.33 < 0.16 Barton[34]
    脆性系数 $\frac{\sigma_{\mathrm{c}}}{\sigma_{\mathrm{t}}}$ < 15 15~18 18~22 ≥22 Zhang等[35]
    变形脆性指数 $\frac{\varepsilon_{\mathrm{p}}+\varepsilon_{\mathrm{e}}}{\varepsilon_{\mathrm{p}}}$ < 2 2~6 6~9 ≥9 李庶林等[36]
    改进脆性指数 $\frac{A_2}{A_1}$ >1.5 1.2~1.5 1.0~1.2 Aubertin等[37]
    Ⅳ(刚度指数型) 下降模量指数 $\frac{G}{|M|}$ >1 ≤1 (值越小,岩爆倾向性越大) Richard[39]
    Richard刚度判据 $\left|\frac{K_{\mathrm{pr}}}{K_{\mathrm{e}}}\right|$ < 1 >1(值越大,岩爆倾向性越大) Homand等[38]
    注:ER为弹性应变能;ED为耗散能/塑性应变能;σc为单轴抗压强度;Eu为卸载模量;Ue为峰前弹性能密度;Ua为峰后耗散能密度;εfεb分别为峰前和峰后应变量;φsaφsc分别为峰前储存和峰后消耗能量;εsaεsc分别为峰前应变及峰后应变;σθ为最大切应力;σ1为最大主应力;σr为最大轴向力;σt为单轴抗拉强度;εp为塑性变形;εe弹性变形;A2为峰前储存弹性能;A1为峰值弹性应变能;GM分别为峰前及峰后应力应变曲线斜率;KprKe分别为矿柱及顶底板围岩刚度。
    下载: 导出CSV
  • [1] 吴爱祥, 王洪江, 尹升华, 等. 深层金属矿原位流态化开采构想[J]. 矿业科学学报, 2021, 6(3): 255-260. doi: 10.19606/j.cnki.jmst.2021.03.001

    Wu Aixiang, Wang Hongjiang, Yin Shenghua, et al. Conception of in-situ fluidization mining for deep metal mines[J]. Journal of Mining Science and Technology, 2021, 6(3): 255-260. doi: 10.19606/j.cnki.jmst.2021.03.001
    [2] Feng X T, Liu J P, Chen B R, et al. Monitoring, warning, and control of rockburst in deep metal mines[J]. Engineering, 2017, 3(4): 538-545. doi: 10.1016/J.ENG.2017.04.013
    [3] 刘冬桥, 张晓云, 何满潮, 等. 砂岩冲击岩爆实验碎屑研究[J]. 矿业科学学报, 2018, 3(3): 246-252. doi: 10.19606/j.cnki.jmst.2018.03.005

    Liu Dongqiao, Zhang Xiaoyun, He Manchao, et al. Study on sandstone fragments from impact rockburst experiments[J]. Journal of Mining Science and Technology, 2018, 3(3): 246-252. doi: 10.19606/j.cnki.jmst.2018.03.005
    [4] 钱七虎. 岩爆、冲击地压的定义、机制、分类及其定量预测模型[J]. 岩土力学, 2014, 35(1): 1-6. doi: 10.16285/j.rsm.2014.01.028

    Qian Qihu. Definition, mechanism, classification and quantitative forecast model for rockburst and pressure bump[J]. Rock and Soil Mechanics, 2014, 35(1): 1-6. doi: 10.16285/j.rsm.2014.01.028
    [5] 冯夏庭, 陈炳瑞, 明华军, 等. 深埋隧洞岩爆孕育规律与机制: 即时型岩爆[J]. 岩石力学与工程学报, 2012, 31(3): 433-444. doi: 10.3969/j.issn.1000-6915.2012.03.001

    Feng Xiating, Chen Bingrui, Ming Huajun, et al. Evolution law and mechanism of rockbursts in deep tunnels: immediate rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 433-444. doi: 10.3969/j.issn.1000-6915.2012.03.001
    [6] 陈炳瑞, 冯夏庭, 明华军, 等. 深埋隧洞岩爆孕育规律与机制: 时滞型岩爆[J]. 岩石力学与工程学报, 2012, 31(3): 561-569. doi: 10.3969/j.issn.1000-6915.2012.03.014

    Chen Bingrui, Feng Xiating, Ming Huajun, et al. Evolution law and mechanism of rockburst in deep tunnel: time delayed rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 561-569. doi: 10.3969/j.issn.1000-6915.2012.03.014
    [7] 何满潮, 苗金丽, 李德建, 等. 深部花岗岩试样岩爆过程实验研究[J]. 岩石力学与工程学报, 2007, 26(5): 865-876. doi: 10.3321/j.issn:1000-6915.2007.05.001

    He Manchao, Miao Jinli, Li Dejian, et al. Experimental study on rockburst processes of granite specimen at great depth[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 865-876. doi: 10.3321/j.issn:1000-6915.2007.05.001
    [8] Ortlepp W D. Note on fault-slip motion inferred from a study of micro-cataclastic particles from an underground shear rupture[J]. Pure and Applied Geophysics, 1992, 139(3/4): 677-695.
    [9] Kaiser P K, Cai M. Design of rock support system under rockburst condition[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2012, 4(3): 215-227. doi: 10.3724/SP.J.1235.2012.00215
    [10] Hoek E, Kaiser P K, Bawden W F. Support of underground excavations in hard rock[M]. Rotterdam: A A Balkema, 2000: 57-81.
    [11] Storchak D A, Harris J, Brown L, et al. Rebuild of the bulletin of the international seismological centre (ISC)—part 2: 1980-2010[J]. Geoscience Letters, 2020, 7: 18. doi: 10.1186/s40562-020-00164-6
    [12] Wang C L, Lu H, Wang F L, et al. Characteristic point of the relatively quiet period for limestone failure under uniaxial compression[J]. Journal of Testing and Evaluation, 2015, 43(6): 20140187. doi: 10.1520/JTE20140187
    [13] 何满潮, 杨国兴, 苗金丽, 等. 岩爆实验碎屑分类及其研究方法[J]. 岩石力学与工程学报, 2009, 28(8): 1521-1529. doi: 10.3321/j.issn:1000-6915.2009.08.002

    He Manchao, Yang Guoxing, Miao Jinli, et al. Classification and research methods of rockburst experimental fragments[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(8): 1521-1529. doi: 10.3321/j.issn:1000-6915.2009.08.002
    [14] Hoek E, Brown E T. The Hoek-Brown failure criterion and GSI-2018 edition[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(3): 445-463. doi: 10.1016/j.jrmge.2018.08.001
    [15] 杨淑清. 隧洞岩爆机制物理模型试验研究[J]. 武汉水利电力大学学报, 1993, 26(2): 160-166. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD199302005.htm

    Yang Shuqing. An experimental study on rockburst mechanism around tunnils by physical simulation[J]. Journal of Wuhan University of Hydraulic and Electric Engineering, 1993, 26(2): 160-166. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD199302005.htm
    [16] 谭以安. 岩爆特征及岩体结构效应[J]. 中国科学: B辑, 1991, 21(9): 985-991. doi: 10.3321/j.issn:1006-9240.1991.09.002

    Tan Yian. Rockburst characteristics and effect of rock mass structure[J]. Science in China: Serier B, 1991, 21(9): 985-991. doi: 10.3321/j.issn:1006-9240.1991.09.002
    [17] 徐林生, 王兰生. 二郎山公路隧道岩爆发生规律与岩爆预测研究[J]. 岩土工程学报, 1999, 21(5): 569-572. doi: 10.3321/j.issn:1000-4548.1999.05.009

    Xu Linsheng, Wang Lansheng. Study on the laws of rockburst and its forecasting in the tunnel of Erlang Mountain Road[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(5): 569-572. doi: 10.3321/j.issn:1000-4548.1999.05.009
    [18] 陈宗基. 岩爆的工程实录、理论与控制[J]. 岩石力学与工程学报, 1987, 6(1): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX198701001.htm

    Tan Tjongkie. Rockburst, case records, theory and contral[J]. Chinese Journal of Rock Mechanics and Engineering, 1987, 6(1): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX198701001.htm
    [19] Ryder J A. Excess shear stress in the assessment of geologically hazardous situations[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1988, 88(1): 27-39.
    [20] Kocharyan G G, Kulyukin A M. Study of caving features for underground workings in a rock mass of block structure with dynamic action. Part Ⅱ. Mechanical properties of interblock gaps[J]. Journal of Mining Science, 1994, 30(5): 437-446. doi: 10.1007/BF02047334
    [21] Zhu W C, Li Z H, Zhu L, et al. Numerical simulation on rockburst of underground opening triggered by dynamic disturbance[J]. Tunnelling and Underground Space Technology, 2010, 25(5): 587-599. doi: 10.1016/j.tust.2010.04.004
    [22] Jiang H M, Li J, Deng S X, et al. Experimental investigation and analysis of triggering mechanism for fault-slip bursts of the tunnel surrounding rock with external disturbance[J]. Shock and Vibration, 2018, 2018: 1687519.
    [23] 邓树新, 王明洋, 李杰, 等. 冲击扰动下滑移型岩爆的模拟试验及机理探讨[J]. 岩土工程学报, 2020, 42(12): 2215-2221. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012009.htm

    Deng Shuxin, Wang Mingyang, Li Jie, et al. Mechanism and simulation experiment of slip-type rock bursts triggered by impact disturbances[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2215-2221. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012009.htm
    [24] 煤炭科学研究总院. MT/T 174-2000煤层冲击倾向性分类及指数的测定方法[S]. 北京: 煤炭工业出版社, 2000.
    [25] 王庆武, 巨能攀, 杜玲丽, 等. 深埋长大隧道岩爆预测与工程防治研究[J]. 水文地质工程地质, 2016, 43(6): 88-94, 100. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201606015.htm

    Wang Qingwu, Ju Nengpan, Du Lingli, et al. Research on rockburst prediction and engineering measures of long and deep-lying tunnels[J]. Hydrogeology & Engineering Geology, 2016, 43(6): 88-94, 100. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201606015.htm
    [26] 宫凤强, 闫景一, 李夕兵. 基于线性储能规律和剩余弹性能指数的岩爆倾向性判据[J]. 岩石力学与工程学报, 2018, 37(9): 1993-2014. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201809001.htm

    Gong Fengqiang, Yan Jingyi, Li Xibing. A new criterion of rock burst proneness based on the linear energy storage law and the residual elastic energy index[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 1993-2014. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201809001.htm
    [27] 唐礼忠, 潘长良, 王文星. 用于分析岩爆倾向性的剩余能量指数[J]. 中南工业大学学报: 自然科学版, 2002, 33(2): 129-132. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200202004.htm

    Tang Lizhong, Pan Changliang, Wang Wenxing. Surplus energy index for analysing rock burst proneness[J]. Journal of Central South University of Technology: Natural Science, 2002, 33(2): 129-132. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200202004.htm
    [28] 殷志强, 李夕兵, 董陇军, 等. 动静组合加载条件岩爆特性及倾向性指标[J]. 中南大学学报: 自然科学版, 2014, 45(9): 3249-3256. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201409042.htm

    Yin Zhiqiang, Li Xibing, Dong Longjun, et al. Rockburst characteristics and proneness index under coupled static and dynamic loads[J]. Journal of Central South University: Science and Technology, 2014, 45(9): 3249-3256 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201409042.htm
    [29] Russenes B F. Analysis of rock spalling for tunnels in steep valley sides[D]. Trondheim: Norwegian Institute of Technology, 1974.
    [30] Tao Z Y. Support design of tunnels subjected to rockbursting[C]//Symposium on Rock Mechanics and Power Plants, Rotterdam: A A Balkema, 1988: 407-411.
    [31] 谷明成, 何发亮, 陈成宗. 秦岭隧道岩爆的研究[J]. 岩石力学与工程学报, 2002, 21(9): 1324-1329. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200209009.htm

    Gu Mingcheng, He Faliang, Chen Chengzong. Study on rockburst in Qingling tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(9): 1324-1329. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200209009.htm
    [32] Turchaninov I A, Markov G A, Gzovsky M V, et al. State of stress in the upper part of the Earth's crust based on direct measurements in mines and on tectonophysical and seismological studies[J]. Physics of the Earth and Planetary Interiors, 1972, 6(4): 229-234.
    [33] Hawkes I. Significance of in-situ stress levels[C]//The 1st International Society for Rock Mechanics and Rock Engineering Congress, Lisbon, 1966.
    [34] Barton N, Lien R, Lunde J. Engineering classification of rock masses for the design of tunnel support[J]. Rock Mechanics, 1974, 6(4): 189-236.
    [35] Zhang J J, Fu B J, Li Z K, et al. Criterion and classification for strain mode rockbursts based on five-factor comprehensive method[C]//12th ISRM Congress, Harmonising Rock Engineering and the Environment, Boca Raton: CRC Press, 2011: 1435-1440.
    [36] 李庶林, 冯夏庭, 王泳嘉, 等. 深井硬岩岩爆倾向性评价[J]. 东北大学学报, 2001, 22(1): 60-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200101017.htm

    Li Shulin, Feng Xiating, Wang Yongjia, et al. Evaluation of rockburst proneness in a deep hard rock mine[J]. Journal of Northeastern University, 2001, 22(1): 60-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200101017.htm
    [37] Aubertin M, Gill D E, Simon R. On the use of the brittleness index modified (BIM) to estimate the post-peak behavior of rocks[C]//1st North American Rock Mechanics Symposium. Rotterdam: A A Balkema, 1994: 945-952.
    [38] Homand F, Piguet J P, Revalor R, et al. Dynamic phenomena in mines and characteristics of rocks[C]//2nd International Symposium on Rockbursts and Seismicity in Mines. Rotterdam: A A Balkema, 1990: 139-142.
    [39] Richard S. Analysis of fault-slip mechanisms in hard rock mining[D]. Montreal: McGill University, 1999.
    [40] 吴立新, 刘善军, 吴育华, 等. 遥感-岩石力学(Ⅳ): 岩石压剪破裂的热红外辐射规律及其地震前兆意义[J]. 岩石力学与工程学报, 2004, 23(4): 539-544. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200404001.htm

    Wu Lixin, Liu Shanjun, Wu Yuhua, et al. Remote-sensing-rock mechanics(ⅳ)—laws of thermal infrared radiation from compressively-sheared fracturing of rock and its meanings for earthquake omens[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(4): 539-544. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200404001.htm
    [41] 刘善军, 吴立新, 张艳博. 岩石破裂前红外热像的时空演化特征[J]. 东北大学学报: 自然科学版, 2009, 30(7): 1034-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200907029.htm

    Liu Shanjun, Wu Lixin, Zhang Yanbo. Temporal-spatial evolution features of infrared thermal images before rock failure[J]. Journal of Northeastern University: Natural Science, 2009, 30(7): 1034-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200907029.htm
    [42] 张艳博, 李健, 刘祥鑫, 等. 巷道岩爆红外辐射前兆特征实验研究[J]. 采矿与安全工程学报, 2015, 32(5): 786-792. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201505015.htm

    Zhang Yanbo, Li Jian, Liu Xiangxin, et al. Infrared radiation portentous characteristics of rock burst in roadway[J]. Journal of Mining & Safety Engineering, 2015, 32(5): 786-792. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201505015.htm
    [43] 张茹, 谢和平, 刘建锋, 等. 单轴多级加载岩石破坏声发射特性试验研究[J]. 岩石力学与工程学报, 2006, 25(12): 2584-2588. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200612034.htm

    Zhang Ru, Xie Heping, Liu Jianfeng, et al. Experimental study on acoustic emission characteristics of rock failure under uniaxial multilevel loadings[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12): 2584-2588. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200612034.htm
    [44] 杨健, 王连俊. 岩爆机理声发射试验研究[J]. 岩石力学与工程学报, 2005, 24(20): 3796-3802. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200520030.htm

    Yang Jian, Wang Lianjun. Study on mechanism of rock burst by acousitc emission testing[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(20): 3796-3802. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200520030.htm
    [45] Su G S, Gan W, Zhai S B, et al. Acoustic emission precursors of static and dynamic instability for coarse-grained hard rock[J]. Journal of Central South University, 2020, 27(10): 2883-2898.
    [46] 张艳博, 张行, 孙林, 等. 花岗岩巷道岩爆声发射振铃计数波动规律研究[J]. 地下空间与工程学报, 2020, 16(1): 260-266. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202001033.htm

    Zhang Yanbo, Zhang Hang, Sun Lin, et al. Study on the wave characteristics of acoustic emission count in rock burst of granite tunnel[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(1): 260-266. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202001033.htm
    [47] Wang C L, Chen Z, Liao Z F, et al. Experimental investigation on predicting precursory changes in entropy for dominant frequency of rockburst[J]. Journal of Central South University, 2020, 27(10): 2834-2848.
    [48] 谢和平, Pariseau W G. 岩爆的分形特征和机理[J]. 岩石力学与工程学报, 1993, 12(1): 28-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199301003.htm

    Xie Heping, Pariseau W G. Fractal character and mechanism of rock bursts[J]. Chinese Journal of Rock Mechanics and Engineering, 1993, 12(1): 28-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199301003.htm
    [49] 裴建良, 刘建锋, 张茹, 等. 单轴压缩条件下花岗岩声发射事件空间分布的分维特征研究[J]. 四川大学学报: 工程科学版, 2010, 42(6): 51-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201006011.htm

    Pei Jianliang, Liu Jianfeng, Zhang Ru, et al. Fractal study on spatial distribution of acoustic emission events of granite specimens under uniaxial compression[J]. Journal of Sichuan University: Engineering Science Edition, 2010, 42(6): 51-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201006011.htm
    [50] 尹贤刚, 李庶林, 唐海燕. 岩石破坏声发射强度分形特征研究[J]. 岩石力学与工程学报, 2005, 24(19): 3512-3516. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200519017.htm

    Yin Xiangang, Li Shulin, Tang Haiyan. Study on strength fractal features of acoustic emission in process of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(19): 3512-3516. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200519017.htm
    [51] 于洋, 冯夏庭, 陈炳瑞, 等. 深部岩体隧洞即时型岩爆微震震源体积的分形特征研究[J]. 岩土工程学报, 2017, 39(12): 2173-2179. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201712005.htm

    Yu Yang, Feng Xiating, Chen Bingrui, et al. Fractal characteristics of micro-seismic volume for different types of immediate rock-bursts in deep tunnels[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2173-2179. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201712005.htm
    [52] 刘章军, 李建林. 岩爆综合预测的模糊概率方法[J]. 长江科学院院报, 2007, 24(4): 42-45, 49. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB200704012.htm

    Liu Zhangjun, Li Jianlin. Comprehensive prediction method for rock burst based on fuzzy probability theory[J]. Journal of Yangtze River Scientific Research Institute, 2007, 24(4): 42-45, 49. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB200704012.htm
    [53] 陈秀铜, 李璐. 基于AHP-FUZZY方法的隧道岩爆预测[J]. 煤炭学报, 2008, 33(11): 1230-1234. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200811007.htm

    Chen Xiutong, Li Lu. Prediction of tunnel rock burst based on AHP-FUZZY method[J]. Journal of China Coal Society, 2008, 33(11): 1230-1234. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200811007.htm
    [54] 王元汉, 李卧东, 李启光, 等. 岩爆预测的模糊数学综合评判方法[J]. 岩石力学与工程学报, 1998, 17(5): 493-501. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX805.002.htm

    Wang Yuanhan, Li Wodong, Lee P K K, et al. Method of fuzzy comprehensive evaluations for rockburst prediction[J]. Chinese Journal of Geotechnical Engineering, 1998, 17(05): 493-501. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX805.002.htm
    [55] 王发芝, 汪令辉, 谢学斌. 模糊灰关联模式识别方法在岩爆预测中的应用[J]. 金属矿山, 2009, 39(5): 172-174. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS200905054.htm

    Wang Fazhi, Wang Linghui, Xie Xuebin. Application of fuzzy grey incidence pattern recognition method in rockburst prediction[J]. Metal Mine, 2009, 39(5): 172-174. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS200905054.htm
    [56] 李长洪, 张立新, 张磊, 等. 灰色突变理论及声发射在岩爆预测中的应用[J]. 中国矿业, 2008, 17(8): 87-90. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA200808031.htm

    Li Changhong, Zhang Lixin, Zhang Lei, et al. Application of grey catastrophe theory and acoustic emission in rock burst prediction[J]. China Mining Magazine, 2008, 17(8): 87-90. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA200808031.htm
    [57] 左宇军, 李夕兵, 马春德, 等. 动静组合载荷作用下岩石失稳破坏的突变理论模型与试验研究[J]. 岩石力学与工程学报, 2005, 24(5): 741-746. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200505001.htm

    Zuo Yujun, Li Xibing, Ma Chunde, et al. Catastrophic model and testing study on failure of static loading rock system under dynamic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(5): 741-746. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200505001.htm
    [58] 潘一山, 章梦涛, 李国臻. 洞室岩爆的尖角型突变模型[J]. 应用数学和力学, 1994, 15(10): 893-900. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX410.006.htm

    Pan Yishan, Zhang Mengtao, Li Guozhen. The study of chamber rockburst by the CUSP model of catastrophe theory[J]. Applied Mathematics and Mechanics, 1994, 15(10): 893-900. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX410.006.htm
    [59] 费鸿禄, 徐小荷, 唐春安. 地下硐室岩爆的突变理论研究[J]. 煤炭学报, 1995, 20(1): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB501.005.htm

    Fei Honglu, Xu Xiaohe, Tang Chunan. Research on theory of catastrophe of rock burst in underground chamber[J]. Journal of China Coal Society, 1995, 20(1): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB501.005.htm
    [60] 徐曾和, 徐小荷, 唐春安. 坚硬顶板下煤柱岩爆的尖点突变理论分析[J]. 煤炭学报, 1995, 20(5): 485-491. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB505.006.htm

    Xu Zenghe, Xu Xiaohe, Tang Chunan. Theoretical analysis of a cusp catastrophe bump of coal pillar under hard rocks[J]. Journal of China Coal Society, 1995, 20(5): 485-491. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB505.006.htm
    [61] 孔祥松, 单仁亮, 肖禹航, 等. 钢管混凝土支架作用下南关矿煤巷变形破坏规律[J]. 矿业科学学报, 2020, 5(2): 160-168. http://kykxxb.cumtb.edu.cn/article/id/276

    Kong Xiangsong, Shan Renliang, Xiao Yuhang, et al. Deformation and failure law of coal roadway supported by concrete filled steel tube supports in Nanguan mine[J]. Journal of Mining Science and Technology, 2020, 5(2): 160-168. http://kykxxb.cumtb.edu.cn/article/id/276
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  491
  • HTML全文浏览量:  80
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-24
  • 修回日期:  2022-03-14
  • 刊出日期:  2022-12-31

目录

    /

    返回文章
    返回