留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矿粉/偏高岭土对天然水硬性石灰早期性能的影响

许栋 张大江 王栋民 齐国栋 张帅

许栋, 张大江, 王栋民, 齐国栋, 张帅. 矿粉/偏高岭土对天然水硬性石灰早期性能的影响[J]. 矿业科学学报, 2022, 7(5): 632-642. doi: 10.19606/j.cnki.jmst.2022.05.014
引用本文: 许栋, 张大江, 王栋民, 齐国栋, 张帅. 矿粉/偏高岭土对天然水硬性石灰早期性能的影响[J]. 矿业科学学报, 2022, 7(5): 632-642. doi: 10.19606/j.cnki.jmst.2022.05.014
Xu Dong, Zhang Dajiang, Wang Dongming, Qi Guodong, Zhang Shuai. Effects of slag powder/metakaolin on the early performance of natural hydraulic lime[J]. Journal of Mining Science and Technology, 2022, 7(5): 632-642. doi: 10.19606/j.cnki.jmst.2022.05.014
Citation: Xu Dong, Zhang Dajiang, Wang Dongming, Qi Guodong, Zhang Shuai. Effects of slag powder/metakaolin on the early performance of natural hydraulic lime[J]. Journal of Mining Science and Technology, 2022, 7(5): 632-642. doi: 10.19606/j.cnki.jmst.2022.05.014

矿粉/偏高岭土对天然水硬性石灰早期性能的影响

doi: 10.19606/j.cnki.jmst.2022.05.014
基金项目: 

国家自然科学基金 52072404

北京市自然科学基金 2222073

详细信息
    作者简介:

    许栋(1998—),男,重庆人,硕士研究生,主要从事无机非金属材料等方面的研究工作。Tel:17382358766,E-mail:Dongxu20220107@163.com

    通讯作者:

    王栋民(1965—),男,山西朔州人,博士,教授,主要从事无机非金属材料等方面的研究工作。Tel:18611624912,E-mail:wangdongmin@cumtb.edu.cn

  • 中图分类号: TU526

Effects of slag powder/metakaolin on the early performance of natural hydraulic lime

  • 摘要: 天然水硬性石灰(NHL) 在古建筑修缮工程中的应用效果是水泥和传统气硬性石灰所无法比拟的,但早期性能发展偏慢的特性使其应用受限。本文研究了矿粉/偏高岭土改性NHL早期硬化过程中物理力学性能、水化放热特性、物相组成和转变以及微观结构演变过程,系统地评估了矿粉/偏高岭土对NHL基材料早期性能发展的影响。结果表明:矿粉可以改善NHL基砂浆的流动性;矿粉/偏高岭土通过火山灰反应生成水化铝酸钙(C3AH6)、水化碳铝酸钙(C4AĈH11) 以及水化硅酸钙(C—S—H),可促进NHL基材料凝结硬化、显著提高其抗压及抗折强度。本研究为推动火山灰质材料复合NHL在古建筑修复工程中的应用提供参考。
  • 图  1  原材料的XRD图谱

    Figure  1.  X-ray diffraction pattern of raw materials

    图  2  天然水硬性石灰、矿粉和偏高岭土的粒径分布

    Figure  2.  Particle size distributions of NHL2, slag powder and metakaolin

    图  3  各试样的砂浆流动度和净浆凝结时间

    Figure  3.  Fluidity of mortars and setting time of pastes

    图  4  不同养护龄期下NHL基砂浆的抗压强度和抗折强度

    Figure  4.  Compressive and flexural strengths of NHL-based mortars after various curing ages

    图  5  各NHL基浆体的水化放热速率和累积放热量

    Figure  5.  Hydration heat release rate and total heat release of NHL-based pastes

    图  6  不同养护龄期下NHL基硬化浆体的XRD图谱

    Figure  6.  XRD patterns of NHL-based hardened pastes cured at different ages

    图  7  NHL基硬化浆体在7 d和28 d时的热分析

    Figure  7.  Thermal analysis of NHL-based pastes hydrated for 7 d and 28 d

    图  8  不同养护龄期下NHL基硬化浆体中化学结合水含量、氢氧化钙含量和碳酸钙含量

    Figure  8.  The content of hydrate water, Ca(OH)2 and CaCO3 in NHL-based pastes at different curing ages

    图  9  NHL基硬化浆体分别养护至3 d和28 d时的SEM图

    Figure  9.  SEM images of NHL-based pastes at 3 d and 28 d

    图  10  SEM图中黄色点的EDS图

    Figure  10.  EDS pattern of yellow points in SEM images

    图  11  NHL基硬化浆体28 d时的孔径分布

    Figure  11.  Pore size distribution of NHL-based pastes at 28 d

    表  1  原材料的化学组成

    Table  1.   Chemical composition of raw materials

    原材料 化学组成质量分数/% 堆积密度/(g·cm-3)
    CaO SiO2 Fe2O3 Al2O3 MgO K2O SO3 Na2O
    天然水硬性石灰 80.13 7.90 1.52 2.56 6.18 0.71 0.92 0.08 0.56
    矿粉 38.45 35.03 0.63 14.95 9.31 0.38 1.13 0.12 0.92
    偏高岭土 0.38 58.86 1.12 38.81 0.21 0.54 0.02 0.06 1.28
    下载: 导出CSV

    表  2  天然水硬性NHL基净浆配合比

    Table  2.   Mix proportions of NHL-based pastes

    样品 水灰比 质量组分配合比/%
    天然水硬性石灰 矿粉 偏高岭土
    NHL 0.55 100 0 0
    S10NHL 90 10 0
    S20NHL 80 20 0
    M10NHL 90 0 10
    M20NHL 80 0 20
    下载: 导出CSV

    表  3  各NHL基浆体的水化放热特征值

    Table  3.   Characteristic values of the hydration heat for NHL-based pastes

    样品 NHL S10NHL S20NHL M10NHL M20NHL
    水化加速期出现的时间/h 4.74 4.53 3.20 1.96 1.52
    第1个放热峰峰值/(mW·g-1) 26.21 24.90 19.36 19.19 20.95
    第2个放热峰出现的时间/h 7.47 10.12 12.39 4.43 2.72
    第2个放热峰峰值/(mW·g-1) 0.27 0.35 0.39 0.41 0.46
    第3个放热峰出现的时间/h 23.68 8.86
    第3个放热峰峰值/(mW·g-1) 0.29 0.43
    累积放热量/(J·g-1) 0~1 h 13.71 13.63 9.37 10.81 11.36
    0~12 h 23.82 24.97 24.45 24.41 28.23
    0~72 h 40.85 56.85 67.99 69.73 83.53
    0~168 h 45.74 71.52 82.90 87.39 104.67
    下载: 导出CSV

    表  4  NHL基硬化浆体28 d时的孔结构参数

    Table  4.   Pore structure parameter of NHL-based pastes at 28 d

    样品 最可几孔径/nm 孔隙率/% 孔径分布/%
    小于20 nm 20~100 nm 100~200 nm 大于200 nm
    NHL 927.21 48.06 2.07 5.27 3.14 89.52
    S10NHL 934.28 47.08 2.74 11.20 2.60 83.46
    S20NHL 879.53 46.69 5.18 14.61 3.94 76.27
    M10NHL 645.17 46.52 2.86 19.47 4.89 72.78
    M20NHL 352.83 46.13 5.89 32.25 6.72 55.14
    下载: 导出CSV
  • [1] Technical Committee CEN/TC 51 "Cement and building limes". BS EN 459-1—2015 Building lime-Part 1: Definitions, specifications and conformity criteria[S]. Europe: British Standards Institution, 2015.
    [2] Vavričuk A, Bokan-Bosiljkov V, Kramar S. The influence of metakaolin on the properties of natural hydraulic lime-based grouts for historic masonry repair[J]. Construction and Building Materials, 2018, 172: 706-716. doi: 10.1016/j.conbuildmat.2018.04.007
    [3] Grilo J, Silva A S, Faria P, et al. Mechanical and mineralogical properties of natural hydraulic lime-metakaolin mortars in different curing conditions[J]. Construction and Building Materials, 2014, 51: 287-294. doi: 10.1016/j.conbuildmat.2013.10.045
    [4] Garijo L, Zhang X X, Ruiz G, et al. Age effect on the mechanical properties of natural hydraulic and aerial lime mortars[J]. Construction and Building Materials, 2020, 236: 117573. doi: 10.1016/j.conbuildmat.2019.117573
    [5] Moon K Y, Cho J S, Choi M K, et al. Effect of blast furnace slag on the hydration properties in natural hydraulic lime[J]. Journal of Ceramic Processing Research, 2016, 17(2): 122-128.
    [6] Luo K, Li J, Lu Z Y, et al. Effect of nano-SiO2 on early hydration of natural hydraulic lime[J]. Construction and Building Materials, 2019, 216: 119-127. doi: 10.1016/j.conbuildmat.2019.04.269
    [7] 马炳坚. 谈谈文物古建筑的保护修缮[J]. 古建园林技术, 2002(4): 58-61, 64. https://www.cnki.com.cn/Article/CJFDTOTAL-GJYL200204016.htm

    Ma Bingjian. Talking about the protection and repair of cultural relics and ancient buildings[J]. Traditional Chinese Architecture and Gardens, 2002(4): 58-61, 64. https://www.cnki.com.cn/Article/CJFDTOTAL-GJYL200204016.htm
    [8] Navrátilová E, Rovnaníková P. Pozzolanic properties of brick powders and their effect on the properties of modified lime mortars[J]. Construction and Building Materials, 2016, 120: 530-539. doi: 10.1016/j.conbuildmat.2016.05.062
    [9] Aggelakopoulou E, Bakolas A, Moropoulou A. Properties of lime-metakolin mortars for the restoration of historic masonries[J]. Applied Clay Science, 2011, 53(1): 15-19. doi: 10.1016/j.clay.2011.04.005
    [10] Zhang D J, Wang D M, Zhao J H, et al. Assessment of the thermal and microstructural properties of metakaolin-air lime based materials at an early age[J]. Applied Clay Science, 2020, 191: 105619. doi: 10.1016/j.clay.2020.105619
    [11] Nunes C, Mácová P, Frankeová D, et al. Influence of linseed oil on the microstructure and composition of lime and lime-metakaolin pastes after a long curing time[J]. Construction and Building Materials, 2018, 189: 787-796. doi: 10.1016/j.conbuildmat.2018.09.054
    [12] Pavlík V, Užáková M. Effect of curing conditions on the properties of lime, lime-metakaolin and lime-zeolite mortars[J]. Construction and Building Materials, 2016, 102: 14-25. doi: 10.1016/j.conbuildmat.2015.10.128
    [13] Azerêdo A, Azeredo G, Carneiro A. Study of rheological parameters of lime-metakaolin paste made of Kaolin wastes and lime paste[J]. Key Eng Mater, 2015, 668: 419-432. doi: 10.4028/www.scientific.net/KEM.668.419
    [14] Zhang D J, Zhao J H, Wang D M, et al. Influence of pozzolanic materials on the properties of natural hydraulic lime based mortars[J]. Construction and Building Materials, 2020, 244: 118360. doi: 10.1016/j.conbuildmat.2020.118360
    [15] Xu S Q, Wang J L, Ma Q L, et al. Study on the lightweight hydraulic mortars designed by the use of diatomite as partial replacement of natural hydraulic lime and masonry waste as aggregate[J]. Construction and Building Materials, 2014, 73: 33-40. doi: 10.1016/j.conbuildmat.2014.09.062
    [16] Bras A, Henriques F M A, Cidade M T. Effect of environmental temperature and fly ash addition in hydraulic lime grout behaviour[J]. Construction and Building Materials, 2010, 24(8): 1511-1517. doi: 10.1016/j.conbuildmat.2010.02.001
    [17] 张芳, 温超凯, 张林, 等. 矿粉对水泥和混凝土性能的影响[J]. 武汉工程大学学报, 2013, 35(11): 43-48. https://www.cnki.com.cn/Article/CJFDTOTAL-WHHG201311010.htm

    Zhang Fang, Wen Chaokai, Zhang Lin, et al. Effect of slag powder on properties of concrete and cement[J]. Journal of Wuhan Institute of Technology, 2013, 35(11): 43-48. https://www.cnki.com.cn/Article/CJFDTOTAL-WHHG201311010.htm
    [18] 李亚刚, 廖宜顺, 刘艳玲, 等. 超细矿渣粉和偏高岭土对硫铝酸盐水泥水化和强度的影响[J]. 硅酸盐通报, 2021, 40(5): 1586-1593, 1609. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202105021.htm

    Li Yagang, Liao Yishun, Liu Yanling, et al. Effects of ultrafine ground granulated blast furnace slag and metakaolin on hydration and strength of calcium sulfoaluminate cement[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(5): 1586-1593, 1609. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202105021.htm
    [19] Chen W, Brouwers H J H. The hydration of slag, part 2: reaction models for blended cement[J]. Journal of Materials Science, 2007, 42(2): 444-464. doi: 10.1007/s10853-006-0874-1
    [20] Liu Z Y, Ni W, Li Y, et al. The mechanism of hydration reaction of granulated blast furnace slag-steel slag-refining slag-desulfurization gypsum-based clinker-free cementitious materials[J]. Journal of Building Engineering, 2021, 44: 103289. doi: 10.1016/j.jobe.2021.103289
    [21] Moropoulou A, Bakolas A, Bisbikou K. Investigation of the technology of historic mortars[J]. Journal of Cultural Heritage, 2000, 1(1): 45-58. doi: 10.1016/S1296-2074(99)00118-1
    [22] 吴中伟, 廉慧珍. 高性能混凝土[M]. 北京: 中国铁道出版社, 1999: 24.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  302
  • HTML全文浏览量:  157
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-29
  • 修回日期:  2022-06-26
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回