留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

疏水改性煤矸石砂浆性能的试验研究

徐薇 王国璇 刘波 王斌 庞玉坤

徐薇, 王国璇, 刘波, 王斌, 庞玉坤. 疏水改性煤矸石砂浆性能的试验研究[J]. 矿业科学学报, 2022, 7(5): 615-623. doi: 10.19606/j.cnki.jmst.2022.05.012
引用本文: 徐薇, 王国璇, 刘波, 王斌, 庞玉坤. 疏水改性煤矸石砂浆性能的试验研究[J]. 矿业科学学报, 2022, 7(5): 615-623. doi: 10.19606/j.cnki.jmst.2022.05.012
Xu Wei, Wang Guoxuan, Liu Bo, Wang Bin, Pang Yukun. A performance study of hydrophobically modified coal gangue mortar[J]. Journal of Mining Science and Technology, 2022, 7(5): 615-623. doi: 10.19606/j.cnki.jmst.2022.05.012
Citation: Xu Wei, Wang Guoxuan, Liu Bo, Wang Bin, Pang Yukun. A performance study of hydrophobically modified coal gangue mortar[J]. Journal of Mining Science and Technology, 2022, 7(5): 615-623. doi: 10.19606/j.cnki.jmst.2022.05.012

疏水改性煤矸石砂浆性能的试验研究

doi: 10.19606/j.cnki.jmst.2022.05.012
基金项目: 

国家自然科学基金 42172319

中央高校基本科研业务费专项基金 2021YQLJ07

详细信息
    作者简介:

    徐薇(1989—),女,安徽淮南人,博士,讲师,主要从事新型建筑材料及城市地下工程方面的研究工作。Tel:010-62331843; E-mail:xuwei0313@163.com

    通讯作者:

    刘波(1970—),男,湖南湘潭人,博士,教授,主要从事城市地下工程、岩土力学及矿山建设方面的研究工作。Tel:010-62331303, E-mail:liub@cumtb.edu.cn

  • 中图分类号: TU521.1

A performance study of hydrophobically modified coal gangue mortar

  • 摘要: 煤矸石物理化学特性复杂、强度低、疏松多孔的特点,限制了其在建筑材料中的大量使用。本文采用疏水溶液浸泡的方式,在非煅烧、非预湿的条件下对煤矸石进行了改性。在系统研究改性前后煤矸石基本性质的基础上,设置0%、30%、50%、70%和100%共5种疏水改性后煤矸石质量替代率,以接触角、抗折强度、抗压强度、氯离子电通量为表征参数,分析了不同疏水改性煤矸石替代率对砂浆性能的影响。研究结果表明:采用本文的制备方法,当改性煤矸石替代率低于50%时,可实现煤矸石砂浆表面的疏水状态;抗压强度随改性煤矸石替代率的增大呈现降低的趋势,最大降低率为不掺加改性煤矸石时的15.7%;替代率为30%时,28 d抗压强度为58.5 MPa。不同改性煤矸石替代率下砂浆电通量均小于250 C,表现出优秀的抗氯离子渗透性。替代率为30%时电通量最小,为130 C。采用本研究提出的疏水改性的方法,可以使煤矸石在非煅烧、非预湿的条件下,保证砂浆良好的力学强度和抗氯离子渗透性能,实现煤矸石的充分利用。
  • 图  1  煤矸石SEM照片

    Figure  1.  SEM images of coal gangue

    图  2  煤矸石XRD衍射图谱

    Figure  2.  XRD spectra of coal gangue

    图  3  处理前后煤矸石浸泡于水中

    Figure  3.  Coal gangue soaked in water before and after treatment

    图  4  不同骨料吸水率

    Figure  4.  Water absorption of different aggregates

    图  5  疏水处理后的煤矸石表面接触角

    Figure  5.  Surface contact angle of coal gangue after hydrophobic treatment

    图  6  煤矸石表面水滴形貌

    Figure  6.  Appearance of water droplets on the surface of coal gangue particles

    图  7  不同煤矸石替代率下砂浆表面接触角

    Figure  7.  Surface contact angle of mortar with different coal gangue replacement ratio

    图  8  7 d和28 d抗折和抗压强度

    Figure  8.  7 d and 28 d flexural strength and compressive strength

    图  9  不同改性煤矸石替代率下砂浆电通量

    Figure  9.  Mortar electricflux at different replacement rates

    图  10  硅烷乳液主要成分

    Figure  10.  Main components of silane emulsion

    图  11  疏水改性前后净浆7 d、28 d龄期的FTIR图谱

    Figure  11.  FTIR spectra of cement-sillica fume paste before and after hydrophobically modified at 7 and 28 days

    表  1  煤矸石细骨料的压碎指标

    Table  1.   The crush index of coal gangue fine aggregates

    编号 粒级/mm 压碎指标实测值/% 平均值/%
    CCG 0.60~1.18 20 20
    20
    20
    FCG 0.30~0.60 21 23
    25
    21
    下载: 导出CSV

    表  2  骨料的堆积密度和表观密度

    Table  2.   The bulk density and apparent density of aggregates

    编号 疏水处理 堆积密度/(kg·m-3) 表观密度/(kg·m-3)
    CQS 未处理 1 328 2 628
    FQS 1 337 2 629
    CCG 1 234 2 307
    FCG 1 246 2 442
    HTCCG 处理后 1 054 2 093
    HTFCG 1 086 1 866
    下载: 导出CSV

    表  3  砂浆配合比

    Table  3.   Mix proportion of mortar

    试样名称 水泥/g 硅灰/g 疏水溶液/g 煤矸石/g 替代率/% 石英砂/g PCA/g
    CGM0 650 32.5 136.5 0 0 0 364.0 182.0 17.2
    CGM30 650 32.5 136.5 109.2 54.6 30 254.8 127.4 19.6
    CGM50 650 32.5 136.5 182.0 91.0 50 182.0 91.0 22.2
    CGM70 650 32.5 136.5 254.8 127.4 70 109.2 54.6 23.8
    CGM100 650 32.5 136.5 364.0 182.0 100 0 0 25.4
    下载: 导出CSV
  • [1] Li J Y, Wang J M. Comprehensive utilization and environmental risks of coal gangue: a review[J]. Journal of Cleaner Production, 2019, 239: 117946. doi: 10.1016/j.jclepro.2019.117946
    [2] Liu H B, Liu Z L. Recycling utilization patterns of coal mining in China[J]. Resources, Conservation and Recycling, 2010, 54: 1331-1340. doi: 10.1016/j.resconrec.2010.05.005
    [3] Mohammed A, Mudavath H, Arif A B M. Characte-rization studies on coal gangue for sustainable geotechnics[J]. Innovative Infrastructure Solutions, 2020, 5: 15. doi: 10.1007/s41062-020-0267-3
    [4] 葛林瀚, 杜慧, 周春侠. 煤矸石的危害性及其资源化利用进展[J]. 煤炭技术, 2010, 29(7): 9-11. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201007005.htm

    Ge Linhan, Du Hui, Zhou Chunxia. Harmfulness of coal gangue and it's recycling utilization and development trend[J]. Coal Technology, 2010, 29(7): 9-11. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201007005.htm
    [5] Gao Y J, Huang H J, Tang W J, et al. Preparation and characterization of a novel porous silicate material from coal gangue[J]. Microporous and Mesoporous Materials, 2015, 217: 210-218. doi: 10.1016/j.micromeso.2015.06.033
    [6] 国家发展和改革委员会. 中国资源综合利用年度报告[J]. 再生资源与循环经济, 2014, 7(10): 3-8. doi: 10.3969/j.issn.1674-0912.2014.10.003

    National Development and Reform Commission. Annual report on comprehensive utilization of resources in China[J]. Renewable Resources and Circular Economy, 2014, 7(10): 3-8. doi: 10.3969/j.issn.1674-0912.2014.10.003
    [7] 李少伟, 周梅, 张莉敏. 自燃煤矸石粗骨料特性及其对混凝土性能的影响[J]. 建筑材料学报, 2020, 23(2): 334-340. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX202002016.htm

    Li Shaowei, Zhou Mei, Zhang Limin. Properties of spontaneous combustion coal gangue coarse aggregate and its influence on concrete[J]. Journal of Building Materials, 2020, 23(2): 334-340. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX202002016.htm
    [8] 崔正龙, 郝敬力, 陈龙, 等. 自燃煤矸石混凝土强度及干燥收缩裂缝试验研究[J]. 非金属矿, 2015, 38(6): 76-78. doi: 10.3969/j.issn.1000-8098.2015.06.023

    Cui Zhenglong, Hao Jingli, Chen Long, et al. Experimental study on strength and drying shrinkage crack of spontaneous combustion gangue concrete[J]. Non-Metallic Mines, 2015, 38(6): 76-78. doi: 10.3969/j.issn.1000-8098.2015.06.023
    [9] 李永靖, 曹爽, 邢洋, 等. 煤矸石骨料混凝土的干燥收缩性能试验研究[J]. 混凝土, 2016, 11: 95-97. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201611025.htm

    Li Yongjing, Cao Shuang, Xing Yang, et al. Experimental study on the drying shrinkage performance of the concrete w ith coal gangue aggregate[J]. Concrete, 2016, 11: 95-97. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201611025.htm
    [10] 王爱国, 朱愿愿, 徐海燕, 等. 混凝土用煤矸石骨料的研究进展[J]. 硅酸盐通报, 2019, 38(7): 2076-2086. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201907017.htm

    Wang Aiguo, Zhu Yuanyuan, Xu Haiyan, et al. Research progress on coal gangue aggregate for concrete[J]. Bulletin of thr Chinese Ceramic Society, 2019, 38(7): 2076-2086. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201907017.htm
    [11] 田雷, 邱流潮. (超)疏水水泥基材料的研究进展[J]. 材料导报, 2021, 35(19): 19070-19080. doi: 10.11896/cldb.20070002

    Tian Lei, Qiu Liuchao. Progress of (super) hydrophobic cement-based materials[J]. Materials Report, 2021, 35(19): 19070-19080. doi: 10.11896/cldb.20070002
    [12] 冯新军, 陈旺, 李旺. 硅烷偶联剂改性煤矸石粉沥青胶浆路用性能及改性机理[J]. 2020, 23(5): 1121-1129.

    Feng Xinjun, Chen Wang, Li Wang. Road performance and modification mechanism of coal gangue powder asphalt mortar modified with silane coupling agent[J]. Journal of Building Materials, 2020, 23(5): 1121-1129.
    [13] Song J L, Zhao D Y, Han Z J, et al. Super-robust superhydrophobic concrete[J]. Journal of Materials Chemistry A, 2017, 5, 14542. doi: 10.1039/C7TA03526H
    [14] Song J L, Li Y X, Xu W, et al. Inexpensive and non-fluorinated superhydrophobic concrete coating for anti-icing and anti-corrosion[J]. Journal of Colloid and Interface Science, 2019, 541: 86-92. doi: 10.1016/j.jcis.2019.01.014
    [15] 程温卿, 王少杰, 刘福胜, 等. 煤矸石用作植被混凝土粗骨料的简化分级方法研究[J]. 新型建筑材料, 2017, 11: 48-50. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201711017.htm

    Cheng Wenqing, Wang Shaojie, Liu Fusheng, et al. Study on simplified classification method of coal gangue used as vegetation concrete coarse aggregate[J]. New Building Materials, 2017, 11: 48-50. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201711017.htm
    [16] 江雷. 从自然到仿生的超疏水纳米界面材料[J]. 科技导报, 2005, 23(2): 4-8. doi: 10.3321/j.issn:1000-7857.2005.02.002

    Jiang Lei. Super-hydrophobic nanoscale interface materials: from natural to artificial[J]. Science & Technology Review, 2005, 23(2): 4-8. doi: 10.3321/j.issn:1000-7857.2005.02.002
    [17] 邱继生, 侯博雯, 关虓, 等. 煤矸石理化性质对混凝土抗压强度的影响[J]. 非金属矿, 2019, 42(2): 29-32. doi: 10.3969/j.issn.1000-8098.2019.02.008

    Qiu Jisheng, Hou Bowen, Guan Xiao, et al. Effect of physical and chemical properties of coal gangue under different stratas on compressive strength of concrete[J]. Non-Metallic Mines, 2019, 42(2): 29-32. doi: 10.3969/j.issn.1000-8098.2019.02.008
    [18] 施惠生, 施韬, 陈宝春, 等. 掺矿渣活性粉末混凝土的抗氯离子渗透性研究[J]. 同济大学学报(自然科学版), 2006, 34(1): 93-96. doi: 10.3321/j.issn:0253-374X.2006.01.019

    Shi Huisheng, Shi Tao, Chen Baochun, et al. Research of chloride ion diffusivity in reactive powder concrete with blast-furnace slag[J]. Journal of Tongji Universit: Natural Science, 2006, 34(1): 93-96. doi: 10.3321/j.issn:0253-374X.2006.01.019
    [19] 马宏强, 易成, 朱红光, 等. 煤矸石集料混凝土抗压强度及耐久性能[J]. 材料导报B: 研究篇, 2018, 32(7): 2390-2395. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201814013.htm

    Ma Hongqiang, Yi Cheng, Zhou Honguang, et al. Compressive strength and durability of coal gangue aggregate concrete[J]. Materials Reports B, 2018, 32(7): 2390-2395. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201814013.htm
    [20] 李永靖, 岳玮琦, 潘铖, 等. 表面活化煤矸石集料水泥砂浆性能试验研究[J]. 非金属矿, 2017, 40(6): 36-38. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201706011.htm

    Li Yongjing, Yue Weiqi, Pan Cheng, et al. Performance study of surface activated coal gangue aggregate cement mortar[J]. Non-Metallic Mines, 2017, 40(6): 36-38. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201706011.htm
    [21] Wang A G, Liu P, Mo L W, et al. Mechanism of thermal activation on granular coal gangue and its impact on the performance of cement mortars[J]. Journal of Building Engineering, 2022, 45: 103616. doi: 10.1016/j.jobe.2021.103616
    [22] 周梅, 田博宇, 王强, 等. 自燃煤矸石粗集料对砂轻混凝土性能影响的试验研究[J]. 硅酸盐通报2013, 32(11): 2231-2237. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201311014.htm

    Zhou Mei, Tian Boyu, Wang Qiang, et al. Experimental study on the influence of spontaneous combustion gangue coarse aggregate on sand lightweight concrete performance[J]. Bulletin of thr Chinese Ceramic Society, 2013, 32(11): 2231-2237. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201311014.htm
    [23] Yu P, Kirkpatrick R J, Poe B, et al. Structure of calcium silicate hydrate (C-S-H): Near-, Mid-, and Far- infrared spectroscopy[J]. Journal of the American Ceramic Society, 1999, 82(3): 742-748.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  310
  • HTML全文浏览量:  97
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-01
  • 修回日期:  2022-04-29
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回