留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

退役动力锂离子电池循环回收技术研究进展

朱学帅 郝廷秀 黄雪 赵翠岩 李铁鑫 李云妹 张国庆 封萍

朱学帅, 郝廷秀, 黄雪, 赵翠岩, 李铁鑫, 李云妹, 张国庆, 封萍. 退役动力锂离子电池循环回收技术研究进展[J]. 矿业科学学报, 2022, 7(5): 585-594. doi: 10.19606/j.cnki.jmst.2022.05.009
引用本文: 朱学帅, 郝廷秀, 黄雪, 赵翠岩, 李铁鑫, 李云妹, 张国庆, 封萍. 退役动力锂离子电池循环回收技术研究进展[J]. 矿业科学学报, 2022, 7(5): 585-594. doi: 10.19606/j.cnki.jmst.2022.05.009
Zhu Xueshuai, Hao Tingxiu, Huang Xue, Zhao Cuiyan, Li Tiexin, Li Yunmei, Zhang Guoqing, Feng Ping. Research progress on recycling technologies of lithium-ion batteries from electric vehicles[J]. Journal of Mining Science and Technology, 2022, 7(5): 585-594. doi: 10.19606/j.cnki.jmst.2022.05.009
Citation: Zhu Xueshuai, Hao Tingxiu, Huang Xue, Zhao Cuiyan, Li Tiexin, Li Yunmei, Zhang Guoqing, Feng Ping. Research progress on recycling technologies of lithium-ion batteries from electric vehicles[J]. Journal of Mining Science and Technology, 2022, 7(5): 585-594. doi: 10.19606/j.cnki.jmst.2022.05.009

退役动力锂离子电池循环回收技术研究进展

doi: 10.19606/j.cnki.jmst.2022.05.009
基金项目: 

国家自然科学基金 52604281

国家自然科学基金 51574252

中央高校基本科研业务费专项资金 2022YQHH03

详细信息
    作者简介:

    朱学帅(1983—),男,辽宁锦州人,副教授,博士生导师,主要从事动力锂离子电池绿色循环利用方面的研究工作。E-mail:zhuxueshuai@163.com

    通讯作者:

    封萍(1987—),女,河北衡水人,副教授,主要从事生物质能源热转化及锂离子电池循环利用方面的研究工作。E-mail:fengping@cumtb.edu.cn

  • 中图分类号: TD98

Research progress on recycling technologies of lithium-ion batteries from electric vehicles

  • 摘要: 新能源汽车行业的迅猛发展,带动了动力锂离子电池需求量的激增,使得天然的钴、锂、镍等成为稀缺资源。为推动新能源汽车产业的持续健康发展,解决锂离子电池带来的环境污染和资源匮乏问题,实现锂离子电池的绿色循环利用迫在眉睫。本文围绕退役动力锂离子电池放电、拆解、剥离、分选、冶金等作业环节,对其循环回收过程进行了系统评述。从技术研发与工业应用多角度分析了不同作业方式对剥离、分选、冶金等效果的影响,讨论了各作业环节的研究进展和存在的主要问题,展望了退役动力锂离子电池循环回收行业未来发展方向,为退役动力锂离子电池绿色高效循环利用提供了重要依据。
  • 图  1  动力锂离子电池结构、原理及组成

    Figure  1.  The structure, working principle and content of power lithium-ion batteries

    图  2  锂离子电池循环回收流程

    Figure  2.  Recycling process of lithium-ion batteries

    图  3  不同剥离方式与产物特征

    Figure  3.  Product characteristics of different stripping methods

    表  1  不同剥离方法效果比较

    Table  1.   Comparison of stripping performance of various methods

    剥离方式 实验方法 实验条件 电极粉剥离效果/%
    物理法 超声剥离[22] 55 ℃水浴,10 min 92.00
    机械剥离[27] -38 ℃预处理5 min,研磨0.5 min 87.29
    化学法 高温煅烧[29] 甲烷,500 ℃高温煅烧,300 min 98.00
    真空热解[28] 450 ℃真空热解,60 min 99.50
    碱溶[32] 32 g/L NaOH,10 min 98.00
    NMP溶解[21] 70 ℃超声,90 min 98.72
    磷酸三乙酯溶解[34] 100 ℃搅拌,60 min 92.00
    柑橘类果汁溶解[35] 90 ℃搅拌,20 min 94.00
    硫酸溶解[36] 40 ℃超声、搅拌,5 min 99.00
    下载: 导出CSV

    表  2  正、负极粉末分选方法

    Table  2.   Separation methods of anode and cathode powders

    分选方法 实验条件 回收率/%
    Falcon离心分选[46] 水压0.025 MPa,旋转频率50 Hz LiCoO2=83.14
    浸出-浮选-沉淀[47] HCl∶H2O2=1∶5,黄药,松油醇,KMnO4,Na3PO4 Li=80.93,Fe=85.40
    Fenton-浮选[48] Fenton试剂,正十二烷,MIBC Co=98.99,Mn=89.45
    磨矿-浮选[49] 研磨5 min,正十二烷,MIBC LiCoO2=49.32,石墨=73.56
    热解-浮选[50] N2,550 ℃,120 min,pH=10,MIBC,淀粉 LiFePO4=70.71
    下载: 导出CSV

    表  3  有价金属的冶金回收方法

    Table  3.   Metallurgical recovery methods of valuable metals

    冶金方法 电池类型 实验条件 回收率/%
    火法[52-54] NCM 正极石墨,3 h,600 ℃ Li=99,Ni=99,Co=99,Mn=97
    NCM 硫酸钴,2 h,800 ℃ Li=80
    NCM 炭黑,0.5 h,550 ℃ Li=99,Ni=99.58,Mn=99.99
    湿法[55-67] NCA 盐酸,18 h,25 ℃,50 g/L Ni=99.99,Co=100
    NCM 硝酸,盐酸,1 h,80 ℃,50 g/L Li=100,Mn=99
    NCM 硫酸,过氧化氢,1 h,40 ℃,40 g/L Li=99.7,Ni=99.7,Co=99.7
    NCM 甲酸,过氧化氢,2 h,60 ℃,50 g/L Li=98.22,Ni=99.96,Co=99.96
    NCM 乙酸,抗坏血酸,甘蔗渣髓0.6 h,50 ℃,20 g/L Li=91.6,Ni=93.5,Co=93.6
    NCM 马来酸,过氧化氢,1 h,70 ℃,40 g/L Li=98.24,Ni=98.41,Co=98.05
    NCM 氨水,亚硫酸铵,2 h,25 ℃ Ni=97.7,Co=99.1
    NCM 氨水,亚硫酸钠,8 h,80 ℃,50 g/L Li=95.3,Ni=89.8,Co=80.7
    NCM 氨水,炭黑,6 h,30 ℃,150 g/L Li=76.19,Ni=96.23,Co=94.57
    NCM 氧化亚铁硫杆菌,72 h,30 ℃,100 g/L Li=76.19,Ni=96.23,Co=94.57
    NCM 嗜铁钩端螺旋体,216 h,30 ℃,100 g/L Li=97,Co=96
    NCM 胞外聚合物,24 h,30 ℃ Ni=55.2,Co=44.9
    下载: 导出CSV
  • [1] Chen M Y, Ma X T, Chen B, et al. Recycling end-of-life electric vehicle lithium-ion batteries[J]. Joule, 2019, 3(11): 2622-2646. doi: 10.1016/j.joule.2019.09.014
    [2] Harper G, Sommerville R, Kendrick E, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575(7781): 75-86. doi: 10.1038/s41586-019-1682-5
    [3] Haram M H S M, Lee J W, Ramasamy G, et al. Feasibility of utilising second life EV batteries: Applications, lifespan, economics, environmental impact, assessment, and challenges[J]. Alexandria Engineering Journal, 2021, 60(5): 4517-4536. doi: 10.1016/j.aej.2021.03.021
    [4] Horesh N, Quinn C, Wang H, et al. Driving to the future of energy storage: Techno-economic analysis of a novel method to recondition second life electric vehicle batteries[J]. Applied Energy, 2021, 295: 117007. doi: 10.1016/j.apenergy.2021.117007
    [5] Makuza B, Tian Q H, Guo X Y, et al. Pyrometallurgical options for recycling spent lithium-ion batteries: a comprehensive review[J]. Journal of Power Sources, 2021, 491: 229622. doi: 10.1016/j.jpowsour.2021.229622
    [6] Nan J M, Han D M, Yang M J, et al. Recovery of metal values from a mixture of spent lithium-ion batteries and nickel-metal hydride batteries[J]. Hydrometallurgy, 2006, 84(1/2): 75-80.
    [7] Arshad F, Li L, Amin K, et al. A comprehensive review of the advancement in recycling the anode and electrolyte from spent lithium ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(36): 13527-13554.
    [8] Zhang G W, Yuan X, He Y Q, et al. Recent advances in pretreating technology for recycling valuable metals from spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2021, 406: 124332. doi: 10.1016/j.jhazmat.2020.124332
    [9] Xiao J F, Guo J, Zhan L, et al. A cleaner approach to the discharge process of spent lithium ion batteries in different solutions[J]. Journal of Cleaner Production, 2020, 255: 120064. doi: 10.1016/j.jclepro.2020.120064
    [10] Ojanen S, Lundström M, Santasalo-Aarnio A, et al. Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling[J]. Waste Management, 2018, 76: 242-249. doi: 10.1016/j.wasman.2018.03.045
    [11] 杨瑞鑫, 熊瑞, 孙逢春. 锂离子动力电池外部短路测试平台开发与试验分析[J]. 电气工程学报, 2021, 16(1): 103-118. https://www.cnki.com.cn/Article/CJFDTOTAL-DQZH202101014.htm

    Yang Ruixin, Xiong Rui, Sun Fengchun. Experimental platform development and characteristics analysis of external short circuit in lithium-ion batteries[J]. Journal of Electrical Engineering, 2021, 16(1): 103-118. https://www.cnki.com.cn/Article/CJFDTOTAL-DQZH202101014.htm
    [12] Zhong X H, Liu W, Han J W, et al. Pretreatment for the recovery of spent lithium ion batteries: theoretical and practical aspects[J]. Journal of Cleaner Production, 2020, 263: 121439. doi: 10.1016/j.jclepro.2020.121439
    [13] Wegener K, Chen W H, Dietrich F, et al. Robot assisted disassembly for the recycling of electric vehicle batteries[J]. Procedia CIRP, 2015, 29: 716-721. doi: 10.1016/j.procir.2015.02.051
    [14] Choux M, Marti Bigorra E, Tyapin I. Task planner for robotic disassembly of electric vehicle battery pack[J]. Metals, 2021, 11(3): 387. doi: 10.3390/met11030387
    [15] Li L R, Zheng P N, Yang T R, et al. Disassembly automation for recycling end-of-life lithium-ion pouch cells[J]. JOM, 2019, 71(12): 4457-4464. doi: 10.1007/s11837-019-03778-0
    [16] Ku H, Jung Y, Jo M, et al. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching[J]. Journal of Hazardous Materials, 2016, 313: 138-146. doi: 10.1016/j.jhazmat.2016.03.062
    [17] Porvali A, Aaltonen M, Ojanen S, et al. Mechanical and hydrometallurgical processes in HCl media for the recycling of valuable metals from Li-ion battery waste[J]. Resources Conservation and Recycling, 2019, 142: 257-266. doi: 10.1016/j.resconrec.2018.11.023
    [18] Zhang T, He Y Q, Ge L H, et al. Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries[J]. Journal of Power Sources, 2013, 240: 766-771. doi: 10.1016/j.jpowsour.2013.05.009
    [19] Muhammad A, Sales W F. Iron-graphene based anode material for rechargeable lithium-ion batteries decorated by gold nanoparticles recovered from gold plated waste surgical tools[J]. Surfaces and Interfaces, 2021, 27: 101575. doi: 10.1016/j.surfin.2021.101575
    [20] Kim S, Bang J, Yoo J, et al. A comprehensive review on the pretreatment process in lithium-ion battery recycling[J]. Journal of Cleaner Production, 2021, 294: 126329. doi: 10.1016/j.jclepro.2021.126329
    [21] He L P, Sun S Y, Song X F, et al. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning[J]. Waste Management, 2015, 46: 523-528. doi: 10.1016/j.wasman.2015.08.035
    [22] Li J H, Shi P X, Wang Z F, et al. A combined recovery process of metals in spent lithium-ion batteries[J]. Chemosphere, 2009, 77(8): 1132-1136. doi: 10.1016/j.chemosphere.2009.08.040
    [23] Zhang T, He Y Q, Wang F F, et al. Chemical and process mineralogical characterizations of spent lithium-ion batteries: an approach by multi-analytical techniques[J]. Waste Management, 2014, 34(6): 1051-1058. doi: 10.1016/j.wasman.2014.01.002
    [24] Ebin B, Petranikova M, Ekberg C. Physical separation, mechanical enrichment and recycling-oriented characterization of spent NiMH batteries[J]. Journal of Material Cycles and Waste Management, 2018, 20(4): 2018-2027. doi: 10.1007/s10163-018-0751-4
    [25] Shin S M, Kim N H, Sohn J S, et al. Development of a metal recovery process from Li-ion battery wastes[J]. Hydrometallurgy, 2005, 79(3/4): 172-181.
    [26] Zhang T, He Y Q, Ge L H, et al. Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries[J]. Journal of Power Sources, 2013, 240: 766-771. doi: 10.1016/j.jpowsour.2013.05.009
    [27] Wang H F, Liu J S, Bai X J, et al. Separation of the cathode materials from the Al foil in spent lithium-ion batteries by cryogenic grinding[J]. Waste Management, 2019, 91: 89-98. doi: 10.1016/j.wasman.2019.04.058
    [28] Tao R, Xing P, Li H Q, et al. Full-component pyrolysis coupled with reduction of cathode material for recovery of spent LiNixCoyMnzO2 lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(18): 6318-6328.
    [29] Yang C, Zhang J L, Yu B Y, et al. Recovery of valuable metals from spent LiNixCoyMnzO2 cathode material via phase transformation and stepwise leaching[J]. Separation and Purification Technology, 2021, 267: 118609. doi: 10.1016/j.seppur.2021.118609
    [30] Sun L, Qiu K Q. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2011, 194: 378-384. doi: 10.1016/j.jhazmat.2011.07.114
    [31] Lombardo G, Ebin B, Steenari B M, et al. Comparison of the effects of incineration, vacuum pyrolysis and dynamic pyrolysis on the composition of NMC-lithium battery cathode-material production scraps and separation of the current collector[J]. Resources, Conservation and Recycling, 2021, 164: 105142. doi: 10.1016/j.resconrec.2020.105142
    [32] Ferreira D A, Prados L M Z, Majuste D, et al. Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries[J]. Journal of Power Sources, 2009, 187(1): 238-246. doi: 10.1016/j.jpowsour.2008.10.077
    [33] Larouche F, Tedjar F, Amouzegar K, et al. Progress and status of hydrometallurgical and direct recycling of Li-ion batteries and beyond[J]. Materials: Basel, Switzerland, 2020, 13(3): 801.
    [34] Bai Y C, Essehli R, Jafta C J, et al. Recovery of cathode materials and aluminum foil using a green solvent[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(17): 6048-6055.
    [35] Pant D, Dolker T. Green and facile method for the recovery of spent Lithium Nickel Manganese Cobalt Oxide (NMC) based Lithium ion batteries[J]. Waste Management, 2017, 60: 689-695. doi: 10.1016/j.wasman.2016.09.039
    [36] Chen X P, Li S Z, Wu X, et al. In-situ recycling of coating materials and Al foils from spent lithium ion batteries by ultrasonic-assisted acid scrubbing[J]. Journal of Cleaner Production, 2020, 258: 120943. doi: 10.1016/j.jclepro.2020.120943
    [37] Sommerville R, Shaw-Stewart J, Goodship V, et al. A review of physical processes used in the safe recycling of lithium ion batteries[J]. Sustainable Materials and Technologies, 2020, 25: e00197. doi: 10.1016/j.susmat.2020.e00197
    [38] Zhang G W, He Y Q, Wang H F, et al. Removal of organics by pyrolysis for enhancing liberation and flotation behavior of electrode materials derived from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(5): 2205-2214.
    [39] Silveira A V M, Santana M P, Tanabe E H, et al. Recovery of valuable materials from spent lithium-ion batteries using electrostatic separation[J]. International Journal of Mineral Processing, 2017, 169: 91-98. doi: 10.1016/j.minpro.2017.11.003
    [40] Shin S M, Kim N H, Sohn J S, et al. Development of a metal recovery process from Li-ion battery wastes[J]. Hydrometallurgy, 2005, 79(3/4): 172-181.
    [41] Marinos D, Mishra B. An approach to processing of lithium-ion batteries for the zero-waste recovery of materials[J]. Journal of Sustainable Metallurgy, 2015, 1(4): 263-274. doi: 10.1007/s40831-015-0024-6
    [42] Bi H J, Zhu H B, Zu L, et al. Eddy current separation for recovering aluminium and lithium-ion phosphate components of spent lithium-iron phosphate batteries[J]. Waste Management & Research, 2019, 37(12): 1217-1228.
    [43] Bi H J, Zhu H B, Zu L, et al. A new model of trajectory in eddy current separation for recovering spent lithium-iron phosphate batteries[J]. Waste Management, 2019, 100: 1-9. doi: 10.1016/j.wasman.2019.08.041
    [44] Zhu X S, Zhang C Y, Feng P, et al. A novel pulsated pneumatic separation with variable-diameter structure and its application in the recycling spent lithium-ion batteries[J]. Waste Management, 2021, 131: 20-30. doi: 10.1016/j.wasman.2021.05.027
    [45] Bi H J, Zhu H B, Zu L, et al. Pneumatic separation and recycling of anode and cathode materials from spent lithium iron phosphate batteries[J]. Waste Management & Research, 2019, 37(4): 374-385.
    [46] Zhang Y, He Y Q, Zhang T, et al. Application of Falcon centrifuge in the recycling of electrode materials from spent lithium ion batteries[J]. Journal of Cleaner Production, 2018, 202: 736-747. doi: 10.1016/j.jclepro.2018.08.133
    [47] Huang Y F, Han G H, Liu J T, et al. A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process[J]. Journal of Power Sources, 2016, 325: 555-564. doi: 10.1016/j.jpowsour.2016.06.072
    [48] He Y Q, Zhang T, Wang F F, et al. Recovery of LiCoO2 and graphite from spent lithium-ion batteries by Fenton reagent-assisted flotation[J]. Journal of Cleaner Production, 2017, 143: 319-325. doi: 10.1016/j.jclepro.2016.12.106
    [49] Yu J D, He Y Q, Ge Z Z, et al. A promising physical method for recovery of LiCoO2 and graphite from spent lithium-ion batteries: Grinding flotation[J]. Separation and Purification Technology, 2018, 190: 45-52. doi: 10.1016/j.seppur.2017.08.049
    [50] Zhao C X, Zhong X H. RETRACTED: Reverse flotation process for the recovery of pyrolytic LiFePO4[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 596: 124741. doi: 10.1016/j.colsurfa.2020.124741
    [51] Tang Y Q, Xie H W, Zhang B L, et al. Recovery and regeneration of LiCoO2-based spent lithium-ion batteries by a carbothermic reduction vacuum pyrolysis approach: controlling the recovery of CoO or Co[J]. Waste Management, 2019, 97: 140-148. doi: 10.1016/j.wasman.2019.08.004
    [52] Zhang Y C, Wang W Q, Fang Q, et al. Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching[J]. Waste Management, 2020, 102: 847-855. doi: 10.1016/j.wasman.2019.11.045
    [53] Lin J, Li L, Fan E S, et al. Conversion mechanisms of selective extraction of lithium from spent lithium-ion batteries by sulfation roasting[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 18482-18489.
    [54] Liu P C, Xiao L, Chen Y F, et al. Recovering valuable metals from LiNixCoyMn1-x-yO2 cathode materials of spent lithium ion batteries via a combination of reduction roasting and stepwise leaching[J]. Journal of Alloys and Compounds, 2019, 783: 743-752. doi: 10.1016/j.jallcom.2018.12.226
    [55] Joulié M, Laucournet R, Billy E. Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries[J]. Journal of Power Sources, 2014, 247: 551-555. doi: 10.1016/j.jpowsour.2013.08.128
    [56] Castillo S, Ansart F, Laberty-Robert C, et al. Advances in the recovering of spent lithium battery compounds[J]. Journal of Power Sources, 2002, 112(1): 247-254. doi: 10.1016/S0378-7753(02)00361-0
    [57] He L P, Sun S Y, Song X F, et al. Leaching process for recovering valuable metals from the LiNi1/3Co1/3 Mn1/3O2 cathode of lithium-ion batteries[J]. Waste Management, 2017, 64: 171-181. doi: 10.1016/j.wasman.2017.02.011
    [58] Gao W F, Zhang X H, Zheng X H, et al. Lithium carbonate recovery from cathode scrap of spent lithium-ion battery: a closed-loop process[J]. Environmental Science & Technology, 2017, 51(3): 1662-1669.
    [59] Yan S X, Sun C H, Zhou T, et al. Ultrasonic-assisted leaching of valuable metals from spent lithium-ion batteries using organic additives[J]. Separation and Purification Technology, 2021, 257: 117930. doi: 10.1016/j.seppur.2020.117930
    [60] Golmohammadzadeh R, Rashchi F, Vahidi E. Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: process optimization and kinetic aspects[J]. Waste Management, 2017, 64: 244-254. doi: 10.1016/j.wasman.2017.03.037
    [61] Ma Y Y, Tang J J, Wanaldi R, et al. A promising selective recovery process of valuable metals from spent lithium ion batteries via reduction roasting and ammonia leaching[J]. Journal of Hazardous Materials, 2021, 402: 123491. doi: 10.1016/j.jhazmat.2020.123491
    [62] Zheng X H, Gao W F, Zhang X H, et al. Spent lithium-ion battery recycling-Reductive ammonia leaching of metals from cathode scrap by sodium sulphite[J]. Waste Management, 2017, 60: 680-688. doi: 10.1016/j.wasman.2016.12.007
    [63] Li D M, Zhang B, Ou X, et al. Ammonia leaching mechanism and kinetics of LiCoO2 material from spent lithium-ion batteries[J]. Chinese Chemical Letters, 2021, 32(7): 2333-2337. doi: 10.1016/j.cclet.2020.11.074
    [64] Wang H Y, Huang K, Zhang Y, et al. Recovery of lithium, nickel, and cobalt from spent lithium-ion battery powders by selective ammonia leaching and an adsorption separation system[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11489-11495.
    [65] Jegan Roy J, Srinivasan M, Cao B. Bioleaching as an eco-friendly approach for metal recovery from spent NMC-based lithium-ion batteries at a high pulp density[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(8): 3060-3069.
    [66] Xin Y Y, Guo X M, Chen S, et al. Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery[J]. Journal of Cleaner Production, 2016, 116: 249-258. doi: 10.1016/j.jclepro.2016.01.001
    [67] Wang J, Tian B Y, Bao Y H, et al. Functional exploration of extracellular polymeric substances (EPS) in the bioleaching of obsolete electric vehicle LiNix CoyMn1-x-yO2 Li-ion batteries[J]. Journal of Hazardous Materials, 2018, 354: 250-257. doi: 10.1016/j.jhazmat.2018.05.009
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  874
  • HTML全文浏览量:  319
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-07
  • 修回日期:  2022-02-13
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回