留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅钙渣复合地聚物水化机理研究

杨志杰 张德 康栋 米世忠 闫长旺 张菊

杨志杰, 张德, 康栋, 米世忠, 闫长旺, 张菊. 硅钙渣复合地聚物水化机理研究[J]. 矿业科学学报, 2022, 7(5): 577-584. doi: 10.19606/j.cnki.jmst.2022.05.008
引用本文: 杨志杰, 张德, 康栋, 米世忠, 闫长旺, 张菊. 硅钙渣复合地聚物水化机理研究[J]. 矿业科学学报, 2022, 7(5): 577-584. doi: 10.19606/j.cnki.jmst.2022.05.008
Yang Zhijie, Zhang De, Kang Dong, Mi Shizhong, Yan Changwang, Zhang Ju. Study on hydration mechanism of calcium silicon slag composite geopolymer[J]. Journal of Mining Science and Technology, 2022, 7(5): 577-584. doi: 10.19606/j.cnki.jmst.2022.05.008
Citation: Yang Zhijie, Zhang De, Kang Dong, Mi Shizhong, Yan Changwang, Zhang Ju. Study on hydration mechanism of calcium silicon slag composite geopolymer[J]. Journal of Mining Science and Technology, 2022, 7(5): 577-584. doi: 10.19606/j.cnki.jmst.2022.05.008

硅钙渣复合地聚物水化机理研究

doi: 10.19606/j.cnki.jmst.2022.05.008
基金项目: 

内蒙古自然科学基金 2019MS05076

内蒙古科技计划 2020GG0257

内蒙古科技计划 2020GG0287

内蒙古工业大学自然重点项目 ZZ201911

内蒙古工业大学博士基金 BS201916

详细信息
    作者简介:

    杨志杰(1983—)男,山西大同人,博士,副教授,主要从事固体废弃物资源综合利用方面的研究工作。Tel:19975544835,E-mail: yangzj@imut.edu.cn

  • 中图分类号: X756

Study on hydration mechanism of calcium silicon slag composite geopolymer

  • 摘要: 为实现硅钙渣、粉煤灰及矿渣三种固废的协同利用,本文通过开展不同粉煤灰、矿渣比(灰渣比)下的硅钙渣复合地聚物制备实验,对硅钙渣复合地聚物的水化机理进行了研究。结果表明,硅钙渣复合地聚物是由β-硅酸二钙自身水化和碱激发水化共同形成的一种以C—S—H和C(N)—A—S—H为主的二元复合胶凝材料;相较于晶相矿物,玻璃相矿物更易发生碱激发水化反应,导致灰渣比在0.5以上时7 d水化物中残存大量未反应的莫来石,但随养护时间的延长莫来石会继续进行水化,并在28 d时生成蠕虫状四方钠沸石和条状贝德石。同时在灰渣比为1.0时,硅钙渣地聚物微观形貌最均匀致密,28 d抗压强度最高,达到37.9 MPa,说明此时能够发挥出粉煤灰、矿渣、硅钙渣之间最佳的协同效应。
  • 图  1  原料的XRD图谱

    A—β-硅酸二钙(β-2CaO·SiO2);B—方解石(CaCO3);G—莫来石(3Al2O3·2SiO2);J—石英(SiO2)

    Figure  1.  XRD patterns of raw materials

    图  2  硅钙渣复合地聚物XRD分析

    A—β-硅酸二钙(β-2CaO·SiO2);B—方解石(CaCO3);C—二水钙长石(CaO·Al2O3·2SiO2·2H2O);D—水化硅酸钙(CaO·SiO2·H2O);E—钠钙沸石(Na3.7Ca7.4Al18.5Si77.5O192·74H2O);F—托勃莫来石(5CaO·6SiO2·5H2O);G—莫来石(3Al2O3·2SiO2);H—四方钠沸石[(Na,Ca)2(Si,Al)5O10·2H2O];I—贝德石[Na0.3Al2(Si,Al)4O10(OH)2·2H2O]

    Figure  2.  XRD patterns of calcium silicon slag composite geopolymer

    图  3  硅钙渣复合地聚物水化后的FT-IR光谱分析

    Figure  3.  FT-IR spectroscopy of hydrates for calcium silicon slag composite geopolymer

    图  4  硅钙渣复合地聚物7 d和28 d的SEM图

    Figure  4.  SEM images of calcium silicon slag composite geopolymer

    图  5  硅钙渣复合地聚物的抗压强度

    Figure  5.  Compressive strength of calcium silicon slag composite geopolymer

    表  1  原料化学成分(质量分数)

    Table  1.   The chemical constituents of raw materials  %

    成分 SiO2 Fe2O3 Al2O3 CaO MgO Na2O K2O SO3 P2O5 F Cl
    硅钙渣 31.08 2.25 5.97 50.35 3.61 2.31 0.36 3.21 0.42 0.15 0.29
    矿渣 34.57 0.51 10.50 42.75 4.13 0.77 0.46 2.78 3.34 0.12 0.07
    粉煤灰 42.67 2.57 42.36 4.30 3.20 0.58 0.39 1.27 1.46 0.47 0.73
    下载: 导出CSV

    表  2  各吸收谱带所对应的基团振动[21-23]

    Table  2.   Various of absorption band corres ponding to chemical group vibration[21-23]

    波数/cm-1 对应基团振动
    3 450~3 000 水分子伸缩振动
    1 650~1 600 水分子弯曲振动
    1 450~1 400 CO32-的非对称伸缩振动
    975~965 C—S—H非对称伸缩振动
    950~900 —Si—O—Si(Al)—非对称伸缩振动
    890~850 —Si(Al)—OH弯曲振动
    730~710 —Si—O—Si(Al)—弯曲振动
    下载: 导出CSV

    表  3  硅钙渣复合地聚物水化物EDS能谱及对应的物相

    Table  3.   EDS analysis of hydrates for calcium silicon slag composite geopolymer and corresponding phase  %

    区域 形貌 各元素摩尔分数比 物相
    O Al Si Ca Na Mg Fe C
    1 球状 55.23 2.31 14.22 26.50 0.21 1.22 0.31 β-硅酸二钙
    2 片状 63.71 0.52 17.22 16.72 0.81 1.02 水化硅酸钙
    3 鳞片状 59.22 0.22 0.10 20.03 0.10 0.10 20.23 方解石
    4 絮状 70.21 5.03 20.64 2.02 2.10 钠钙沸石
    5 棒状 65.36 0.32 18.25 15.13 0.52 0.42 托勃莫来石
    6 棒状 66.03 0.26 18.45 14.83 0.22 0.21 托勃莫来石
    7 块状 61.46 27.71 9.52 0.27 1.04 莫来石
    8 块状 60.24 26.98 10.96 0.55 0.45 0.82 莫来石
    9 块状 62.12 26.56 10.26 0.23 0.12 0.71 莫来石
    10 球状 54.56 1.75 15.42 26.22 0.13 1.52 0.40 β-硅酸二钙
    11 片状 65.22 0.33 17.45 16.22 0.13 0.44 0.21 水化硅酸钙
    12 蠕虫状 63.23 5.21 21.01 5.23 5.01 0.11 0.20 四方钠沸石
    13 蠕虫状 62.98 5.67 19.82 5.56 5.44 0.32 0.21 四方钠沸石
    14 蠕虫状 62.65 5.27 21.05 5.16 5.31 0.22 0.34 四方钠沸石
    15 条状 68.97 14.63 14.36 0.22 1.61 0.11 0.10 贝德石
    16 条状 69.29 14.19 14.38 0.11 1.82 0.12 0.09 贝德石
    17 条状 68.62 14.61 14.45 0.19 2.03 0.10 贝德石
    下载: 导出CSV
  • [1] Wang P, Wang J M, Qin Q, et al. Life cycle assessment of magnetized fly-ash compound fertilizer production: a case study in China[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 706-713. doi: 10.1016/j.rser.2017.02.005
    [2] Yang C N, Zhang J B, Li S P, et al. Mechanisms of mechanochemical activation during comprehensive utilization of high-alumina coal fly ash[J]. Waste Management, 2020, 116: 190-195. doi: 10.1016/j.wasman.2020.08.003
    [3] Shi Y, Jiang K X, Zhang T A. A cleaner electrolysis process to recover alumina from synthetic sulfuric acid leachate of coal fly ash[J]. Hydrometallurgy, 2020, 191: 105196. doi: 10.1016/j.hydromet.2019.105196
    [4] Wang L, Zhang T A, Lü G Z, et al. Carbochlorination of alumina and silica from high-alumina fly ash[J]. Minerals Engineering, 2019, 130: 85-91. doi: 10.1016/j.mineng.2018.09.022
    [5] Rui H M, Zhang L C, Li L J, et al. Solvent extraction of lithium from hydrochloric acid leaching solution of high-alumina coal fly ash[J]. Chemical Physics Letters, 2021, 771: 138510. doi: 10.1016/j.cplett.2021.138510
    [6] Sun Y L, Qi G X, Lei X F, et al. Extraction of uranium in bottom ash derived from high-germanium coals[J]. Procedia Environmental Sciences, 2016, 31: 589-597. doi: 10.1016/j.proenv.2016.02.096
    [7] Hu P P, Hou X J, Zhang J B, et al. Distribution and occurrence of lithium in high-alumina-coal fly ash[J]. International Journal of Coal Geology, 2018, 189: 27-34. doi: 10.1016/j.coal.2018.02.011
    [8] 李会泉, 张建波, 王晨晔, 等. 高铝粉煤灰伴生资源清洁循环利用技术的构建与研究进展[J]. 洁净煤技术, 2018, 24(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JJMS201802001.htm

    Li Huiquan, Zhang Jianbo, Wang Chenye, et al. Construct and research advance in clean and cyclic utilizations of associated resources in high-alumina coal fly ash[J]. Clean Coal Technology, 2018, 24(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JJMS201802001.htm
    [9] Zhang J B, Li S P, Li H Q, et al. Acid activation for pre-desilicated high-alumina fly ash[J]. Fuel Processing Technology, 2016, 151: 64-71. doi: 10.1016/j.fuproc.2016.05.036
    [10] 贺实月, 李会泉, 李少鹏, 等. 煤粉炉高铝粉煤灰碱溶脱硅反应动力学[J]. 中国有色金属学报, 2014, 24(7): 1888-1894. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201407029.htm

    He Shiyue, Li Huiquan, Li Shaopeng, et al. Kinetics of desilication process of fly ash with high aluminum from pulverized coal fired boiler in alkali solution[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(7): 1888-1894. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201407029.htm
    [11] Yan C W, Zhao H W, Zhang J, et al. The cementitious composites using calcium silicate slag as partial cement[J]. Journal of Cleaner Production, 2020, 256: 120514. doi: 10.1016/j.jclepro.2020.120514
    [12] Yang Z J, Kang D, de Zhang, et al. Crystal transformation of calcium silicate minerals synthesized by calcium silicate slag and silica fume with increase of C/S molar ratio[J]. Journal of Materials Research and Technology, 2021, 15: 4185-4192. doi: 10.1016/j.jmrt.2021.10.047
    [13] Yang Z J, Zhang D, Jiao Y, et al. Crystal evolution of calcium silicate minerals synthesized by calcium silicon slag and silica fume with increase of hydrothermal synthesis temperature[J]. Materials, 2022, 15(4): 1620. doi: 10.3390/ma15041620
    [14] Zhang D, Yang Z J, Kang D, et al. Experimental study on subgrade material of calcium silicate slag[J]. Materials, 2022, 15(6): 2304. doi: 10.3390/ma15062304
    [15] 王晓丽, 李秋义, 陈帅超, 等. 工业固体废弃物在新型建材领域中的应用研究与展望[J]. 硅酸盐通报, 2019, 38(11): 3456-3464. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201911013.htm

    Wang Xiaoli, Li Qiuyi, Chen Shuaichao, et al. Application research and prospect of industrial solid waste in new building materials[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(11): 3456-3464. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201911013.htm
    [16] 孙坚, 耿春雷, 张作泰, 等. 工业固体废弃物资源综合利用技术现状[J]. 材料导报, 2012, 26(11): 105-109. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201211023.htm

    Sun Jian, Geng Chunlei, Zhang Zuotai, et al. Present situation of comprehensive utilization technology of industrial solid waste[J]. Materials Review, 2012, 26(11): 105-109. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201211023.htm
    [17] Bensted J, Barnes P. Structure and performance of cements, 2nd edition[M]. London: Applied Science Publishers, 1983.
    [18] Cong P L, Mei L N. Using silica fume for improvement of fly ash/slag based geopolymer activated with calcium carbide residue and gypsum[J]. Construction and Building Materials, 2021, 275: 122171. doi: 10.1016/j.conbuildmat.2020.122171
    [19] Nocuò-Wczelik W. Effect of Na and Al on the phase composition and morphology of autoclaved calcium silicate hydrates[J]. Cement and Concrete Research, 1999, 29(11): 1759-1767. doi: 10.1016/S0008-8846(99)00166-0
    [20] 黄丽萍, 马倩敏, 郭荣鑫, 等. 碱矿渣胶凝材料水化产物的试验研究[J]. 硅酸盐通报, 2020, 39(4): 1194-1200. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202004026.htm

    Huang Liping, Ma Qianmin, Guo Rongxin, et al. Experimental study on hydration products of alkali-activated slag[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(4): 1194-1200. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202004026.htm
    [21] Wang Y G, Liu X M, Zhang W, et al. Effects of Si/Al ratio on the efflorescence and properties of fly ash based geopolymer[J]. Journal of Cleaner Production, 2020, 244: 118852. doi: 10.1016/j.jclepro.2019.118852
    [22] Criado M, Palomo A, Fernández-Jiménez A. Alkali activation of fly ashes. Part 1: effect of curing conditions on the carbonation of the reaction products[J]. Fuel, 2005, 84(16): 2048-2054. doi: 10.1016/j.fuel.2005.03.030
    [23] Shi D, Yao Y, Ye J Y, et al. Effects of seawater on mechanical properties, mineralogy and microstructure of calcium silicate slag-based alkali-activated materials[J]. Construction and Building Materials, 2019, 212: 569-577. doi: 10.1016/j.conbuildmat.2019.03.288
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  50
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-29
  • 修回日期:  2022-05-05
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回