留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于RSM-BBD的自燃煤矸石骨料透水混凝土配比优化研究

刘艳 周梅 张凯 吴龙 彭磊

刘艳, 周梅, 张凯, 吴龙, 彭磊. 基于RSM-BBD的自燃煤矸石骨料透水混凝土配比优化研究[J]. 矿业科学学报, 2022, 7(5): 565-576. doi: 10.19606/j.cnki.jmst.2022.05.007
引用本文: 刘艳, 周梅, 张凯, 吴龙, 彭磊. 基于RSM-BBD的自燃煤矸石骨料透水混凝土配比优化研究[J]. 矿业科学学报, 2022, 7(5): 565-576. doi: 10.19606/j.cnki.jmst.2022.05.007
Liu Yan, Zhou Mei, Zhang Kai, Wu Long, Peng Lei. The optimization of pervious concrete ratios with spontaneous combustion gangue aggregates based on the RSM-BBD method[J]. Journal of Mining Science and Technology, 2022, 7(5): 565-576. doi: 10.19606/j.cnki.jmst.2022.05.007
Citation: Liu Yan, Zhou Mei, Zhang Kai, Wu Long, Peng Lei. The optimization of pervious concrete ratios with spontaneous combustion gangue aggregates based on the RSM-BBD method[J]. Journal of Mining Science and Technology, 2022, 7(5): 565-576. doi: 10.19606/j.cnki.jmst.2022.05.007

基于RSM-BBD的自燃煤矸石骨料透水混凝土配比优化研究

doi: 10.19606/j.cnki.jmst.2022.05.007
基金项目: 

国家自然科学基金联合基金 U1261122

辽宁省教育厅科学技术项目 LJ2019FL006

辽宁工程技术大学学科创新团队资助项目 LNTU20TD-12

详细信息
    作者简介:

    刘艳(1997—),女,云南昭通人,硕士研究生,主要从事固废在建材领域资源化利用的研究工作。Tel:13314185964,E-mail:532562383@qq.com

    通讯作者:

    周梅(1964—),女,广东潮阳人,教授,博士生导师,主要从事先进土木工程材料和固废资源化利用的研究工作。Tel:13941888808,E-mail:zhoumei1108@126.com

  • 中图分类号: TU528

The optimization of pervious concrete ratios with spontaneous combustion gangue aggregates based on the RSM-BBD method

  • 摘要: 为了对自燃煤矸石骨料透水混凝土进行配比优化,采用BBD响应面法设计17组试验,研究骨灰比、水灰比和增强剂掺量对透水混凝土抗压强度、透水系数和孔隙率的影响,构建响应面模型,揭示各因素与响应值的相关关系,获得综合性能最优配比。研究结果表明:各因素与各响应值关系皆呈二次多项式模型,回归系数R2皆大于0.9,说明模型合理性和拟合性较好。水灰比和骨灰比对各响应值影响均非常显著,增强剂掺量只对抗压强度影响非常显著,骨灰比和增强剂掺量交互项对抗压强度影响显著,水灰比与增强剂掺量交互项对孔隙率影响显著。当骨灰比3.2、水灰比0.22、增强剂掺量4.5 % 时,混凝土28 d抗压强度为28.7 MPa、透水系数3.21 mm/s、孔隙率19.7 %,满足C20透水混凝土的工程要求。
  • 图  1  自燃煤矸石外观和微观形貌

    Figure  1.  Appearance and microstructure of spontaneous combustion coal gangue

    图  2  自燃煤矸石矿物组成及孔隙特征

    Figure  2.  Mineral composition and pore characteristics of spontaneous combustion coal gangue

    图  3  自燃煤矸石骨料

    Figure  3.  Spontaneous combustion coal gangue aggregate

    图  4  自燃煤矸石细骨料级配曲线

    Figure  4.  Gradation curve of spontaneous combustion coal sand

    图  5  骨灰比与水灰比交互作用对抗压强度、透水系数、孔隙率影响的响应曲面和等高线

    Figure  5.  Response surface and contour of the interaction between aggregate-cement ratio and water-cement ratio on compressive strength, permeability coefficient and porosity

    图  6  骨灰比与增强剂掺量交互作用对抗压强度、透水系数、孔隙率影响的响应曲面和等高线

    Figure  6.  Response surface and contour of the interaction between aggregate-cement ratio and the dosage of the reinforcing agent on compressive strength, permeability coefficient and porosity

    图  7  不同增强剂掺量下的透水混凝土28 d水化产物形貌

    Figure  7.  Morphology of 28 d hydration products of pervious concrete with different dosage of the reinforcing agent

    图  8  水灰比与增强剂掺量交互作用对抗压强度、透水系数、孔隙率影响的响应曲面和等高线

    Figure  8.  Response surface and contour of the interaction between water-cement ratio and the dosage of the reinforcing agent on compressive strength, permeability coefficient and porosity

    图  9  透水混凝土形貌

    Figure  9.  The morphology of pervious concrete

    图  10  预测模型计算结果与试验结果对比

    Figure  10.  Comparison between the calculation results of the prediction model and the test results

    图  11  不同倍数下掺量不同的增强剂透水混凝土微观形貌

    Figure  11.  The microstructure of pervious concrete with different reinforcing agent under different multiples

    表  1  自燃煤矸石化学组成

    Table  1.   The chemical composition of spontaneous combustion coal gangue

    组成 SiO2 Al2O3 Fe2O3 CaO MgO TiO2 Na2O K2O SO3
    质量分数/% 59.34 25.28 4.66 4.50 2.00 1.70 1.15 0.53 0.25
    下载: 导出CSV

    表  2  自燃煤矸石骨料主要技术性质指标

    Table  2.   Main technical properties of spontaneous combustion coal gangue aggregate

    品种 表观密度/(kg·m-3) 松堆密度/(kg·m-3) 压碎指标/% 空隙率/% 吸水率/%
    自燃煤矸石 2 382 1 221 18 53.8 9.87
    自燃煤矸石细骨料 2 357 1 030 56.3 11.70
    下载: 导出CSV

    表  3  设计因素编码及水平

    Table  3.   Codes and levels of design factors

    编码 因素 水平
    -1 0 1
    x1 mG/mC 2.8 3.1 3.4
    x2 mW/mC 0.20 0.22 0.24
    x3 wSR/% 3.0 4.5 6.0
    下载: 导出CSV

    表  4  响应面试验设计与结果

    Table  4.   Design and results of response surface experiment

    编号 因素 抗压强度y1/MPa 透水系数y2/(mm·s-1) 孔隙率y3/%
    mG/mC mW/mC wSR/% 试验值 预测值 试验值 预测值 试验值 预测值
    1 2.8 0.24 4.5 41.2 42.0 0.22 0.17 5.8 4.3
    2 3.4 0.22 3.0 28.4 29.9 2.31 2.31 18.5 18.3
    3 2.8 0.22 3.0 32.4 31.1 0.87 1.00 10.4 11.2
    4 3.4 0.22 6.0 32.2 33.5 2.02 1.89 16.3 15.6
    5 2.8 0.22 6.0 47.5 46.1 0.58 0.58 8.4 8.6
    6 3.4 0.24 4.5 40.5 38.6 0.97 0.72 12.1 11.5
    7 2.8 0.20 4.5 26.0 27.9 1.86 2.11 15.4 16.0
    8 3.4 0.20 4.5 18.5 17.7 3.45 3.84 21.3 22.8
    9 3.1 0.22 4.5 29.8 30.5 1.84 1.72 13.9 14.0
    10 3.1 0.22 4.5 29.6 30.5 1.42 1.72 14.2 14.0
    11 3.1 0.22 4.5 30.7 30.5 1.62 1.72 12.7 14.0
    12 3.1 0.22 4.5 33.0 30.5 1.76 1.72 13.4 14.0
    13 3.1 0.22 4.5 29.3 30.5 1.97 1.72 15.7 14.0
    14 3.1 0.20 6.0 26.8 26.3 3.87 3.62 21.8 21.0
    15 3.1 0.24 6.0 45.2 45.8 1.12 1.50 11.8 13.1
    16 3.1 0.24 3.0 34.0 34.5 1.08 1.33 11.4 12.2
    17 3.1 0.20 3.0 19.6 19.0 5.00 4.62 28.6 27.3
    下载: 导出CSV

    表  5  抗压强度多种模型综合分析结果

    Table  5.   Comprehensive analytical results of various models of compressive strength

    模型 P R2
    连续项 失拟项 校正值 预测值
    线性模型 < 0.000 1 0.052 7 0.844 7 0.756 2
    交互模型 0.180 2 0.065 8 0.873 5 0.678 1
    二次模型 0.044 5 0.186 1 0.939 1 0.902 7
    下载: 导出CSV

    表  6  透水系数多种模型综合分析结果

    Table  6.   Comprehensive analytical results of various models of permeability coefficient

    模型 P R2
    连续项 失拟项 校正值 预测值
    线性模型 0.000 3 0.010 6 0.701 1 0.503 8
    交互模型 0.808 8 0.006 4 0.645 8 -0.087 1
    二次模型 0.007 4 0.050 0 0.909 8 0.905 0
    下载: 导出CSV

    表  7  孔隙率多种模型综合分析结果

    Table  7.   Comprehensive analysis results of various models of porosity models

    模型 P R2
    连续项 失拟项 校正值 预测值
    线性模型 < 0.000 1 0.028 7 0.747 5 0.587 6
    交互模型 0.682 5 0.019 3 0.715 5 0.157 3
    二次模型 0.006 8 0.158 0 0.922 0 0.905 7
    下载: 导出CSV

    表  8  回归方程的方差分析结果

    Table  8.   Variance analytical results of regression equation

    来源 df 均方差 F P
    y1 y2 y3 y1 y2 y3 y1 y2 y3
    回归 9 109.03 2.57 51.03 28.39 16.96 22.03 0.000 1 0.000 6 0.000 2
    x1 1 94.53 3.41 99.41 24.62 22.49 42.91 0.001 6 0.002 1 0.000 3
    x2 1 612.50 14.55 264.50 159.50 96.08 114.16 <0.000 1 <0.000 1 <0.000 1
    x3 1 173.91 0.35 14.04 45.29 2.30 6.06 0.000 3 0.173 0 0.053 3
    x1 x2 1 11.56 0.18 0.04 3.01 1.16 0.02 0.126 3 0.316 3 0.899 2
    x1 x3 1 31.92 0.00 0.00 8.31 0.00 0.00 0.023 5 1.000 0 0.949 5
    x2 x3 1 4.00 0.34 12.96 1.04 2.26 5.59 0.341 4 0.176 5 0.048 0
    x12 1 24.20 2.12 29.90 6.30 14.00 12.91 0.040 4 0.007 2 0.008 8
    x22 1 7.42 1.58 22.96 1.93 10.44 9.91 0.207 1 0.014 4 0.016 2
    x32 1 21.27 0.79 18.30 5.54 5.21 7.90 0.020 8 0.056 5 0.026 1
    残差 7 3.84 0.15 2.32
    失拟值 3 5.95 0.29 3.74 2.64 6.59 3.00 0.186 1 0.051 0 0.158 0
    纯误差 4 2.26 0.05 1.25
    下载: 导出CSV

    表  9  模型可信度检验分析结果

    Table  9.   Results of model credibility test and analysis

    模型 标准偏差 均值 R2 R2校正值 R2预测值 残差平方和预测值 变异系数/% 信噪比
    y1 1.96 32.04 0.973 3 0.939 1 0.902 7 299.75 6.12 18.888
    y2 0.39 1.88 0.976 0 0.909 8 0.905 0 14.39 13.7 16.026
    y3 1.52 14.81 0.965 9 0.922 0 0.905 7 187.47 10.28 19.702
    下载: 导出CSV

    表  10  参数优化后预测值与实测值对比

    Table  10.   Comparison of predicted and measured values after parameter optimization

    类别 骨灰比 水灰比 增强剂掺量/% 抗压强度 透水系数 孔隙率
    预测值/MPa 实测值/MPa 误差/% 预测值/(mm·s-1) 实测值/(mm·s-1) 误差/% 预测值/% 实测值/% 误差/%
    实验室试验值 3.2 0.22 4.5 28.7 29.3 2.09 3.21 3.29 2.49 19.7 18.9 4.06
    现场试验路段实测值 3.2 0.22 4.5 28.7 30.2 5.23 3.21 3.11 3.12 19.7 19.2 2.54
    下载: 导出CSV
  • [1] 俞孔坚, 李迪华, 袁弘, 等. "海绵城市"理论与实践[J]. 城市规划, 2015, 39(6): 26-36. https://www.cnki.com.cn/Article/CJFDTOTAL-CSGH201506009.htm

    Yu Kongjian, Li Dihua, Yuan Hong, et al. "Sponge city": theory and practice[J]. City Planning Review, 2015, 39(6): 26-36. https://www.cnki.com.cn/Article/CJFDTOTAL-CSGH201506009.htm
    [2] 叶强. 工业固废制备透水砖及其孔结构研究进展[J]. 材料导报, 2021, 35(S1): 274-278. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2021S1052.htm

    Ye Qiang. Research progress on the preparation and pore structure characteristics of water-permeable brick by industrial solid waste[J]. Materials Reports, 2021, 35(S1): 274-278. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2021S1052.htm
    [3] 杨锋. 利用固废材料制备透水混凝土及其性能影响因素研究[D]. 南京: 东南大学, 2020.
    [4] 王国平. 辽宁阜新煤矸石资源化研究[D]. 成都: 成都理工大学, 2005.
    [5] Kevern J T, Wang K, Schaefer V R. Effect of coarse aggregate on the freeze-thaw durability of pervious concrete[J]. Journal of Materials in Civil Engineering, 2010, 22(5): 469-475. doi: 10.1061/(ASCE)MT.1943-5533.0000049
    [6] Chandrappa A K, Biligiri K P. Pervious concrete as a sustainable pavement material-Research findings and future prospects: a state-of-the-art review[J]. Construction and Building Materials, 2016, 111: 262-274. doi: 10.1016/j.conbuildmat.2016.02.054
    [7] 王奕仁, 王栋民. 骨料种类与品质对透水混凝土性能影响的研究进展[J]. 材料导报, 2017, 31(17): 98-105, 121. doi: 10.11896/j.issn.1005-023X.2017.017.014

    Wang Yiren, Wang Dongmin. Effects of aggregate species and quality on the properties of pervious concrete: a review[J]. Materials Review, 2017, 31(17): 98-105, 121. doi: 10.11896/j.issn.1005-023X.2017.017.014
    [8] 李佳彬, 肖建庄, 孙振平. 再生粗骨料特性及其对再生混凝土性能的影响[J]. 建筑材料学报, 2004, 7(4): 390-395. doi: 10.3969/j.issn.1007-9629.2004.04.006

    Li Jiabin, Xiao Jianzhuang, Sun Zhenping. Properties of recycled coarse aggregate and its influence on recycled concrete[J]. Journal of Building Materials, 2004, 7(4): 390-395. doi: 10.3969/j.issn.1007-9629.2004.04.006
    [9] Yang J, Jiang G L. Experimental study on properties of pervious concrete pavement materials[J]. Cement and Concrete Research, 2003, 33(3): 381-386. doi: 10.1016/S0008-8846(02)00966-3
    [10] Nguyen D H, Sebaibi N, Boutouil M, et al. A modified method for the design of pervious concrete mix[J]. Construction and Building Materials, 2014, 73: 271-282. doi: 10.1016/j.conbuildmat.2014.09.088
    [11] Shu X, Huang B S, Wu H, et al. Performance comparison of laboratory and field produced pervious concrete mixtures[J]. Construction and Building Materials, 2011, 25(8): 3187-3192. doi: 10.1016/j.conbuildmat.2011.03.002
    [12] 孙家瑛, 黄科, 蒋华钦. 透水水泥混凝土力学性能和耐久性能研究[J]. 建筑材料学报, 2007, 10(5): 583-587. doi: 10.3969/j.issn.1007-9629.2007.05.016

    Sun Jiaying, Huang Ke, Jiang Huaqin. Research on physical properties and durability of pervious cement concrete[J]. Journal of Building Materials, 2007, 10(5): 583-587. doi: 10.3969/j.issn.1007-9629.2007.05.016
    [13] 高谦, 杨晓炳, 温震江, 等. 基于RSM-BBD的混合骨料充填料浆配比优化[J]. 湖南大学学报: 自然科学版, 2019, 46(6): 47-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201906007.htm

    Gao Qian, Yang Xiaobing, Wen Zhenjiang, et al. Optimization of proportioning of mixed aggregate filling slurry based on BBD response surface method[J]. Journal of Hunan University: Natural Sciences, 2019, 46(6): 47-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201906007.htm
    [14] 李锐, 姜永华, 张燕玲, 等. 基于响应曲面法优化硫酸铵结晶[J]. 硅酸盐学报, 2022, 50(3): 782-790. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202203022.htm

    Li Rui, Jiang Yonghua, Zhang Yanling, et al. Optimisation of ammonium sulphate crystallization based on response surface methodology[J]. Journal of the Chinese Ceramic Society, 2022, 50(3): 782-790. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202203022.htm
    [15] 刘永鹤, 彭金辉, 孟彬, 等. 莫来石晶须长径比影响因素的响应曲面法优化[J]. 硅酸盐学报, 2011, 39(3): 403-408. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201103006.htm

    Liu Yonghe, Peng Jinhui, Meng Bin, et al. Parameter optimization for aspect ratio of mullite whiskers by response surface method[J]. Journal of the Chinese Ceramic Society, 2011, 39(3): 403-408. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201103006.htm
    [16] 李典, 冯国瑞, 郭育霞, 等. 基于响应面法的充填体强度增长规律分析[J]. 煤炭学报, 2016, 41(2): 392-398. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201602016.htm

    Li Dian, Feng Guorui, Guo Yuxia, et al. Analysis on the strength increase law of filling material based on response surface method[J]. Journal of China Coal Society, 2016, 41(2): 392-398. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201602016.htm
    [17] 于泽明, 陈艳, 马嵘萍, 等. 动/静荷载作用纤维-矿粉-聚苯乙烯混凝土吸能特征研究[J]. 材料导报, 2021, 35(S2): 669-677. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2021S2124.htm

    Yu Zeming, Chen Yan, Ma Rongping, et al. Study on energy absorption characteristics of BF-SP-EPS concrete under dynamic/static load[J]. Materials Reports, 2021, 35(S2): 669-677. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2021S2124.htm
    [18] 党星海, 周群, 曹润倬, 等. 采用响应曲面法的补偿收缩混凝土力学性能优化研究[J]. 混凝土, 2019(11): 39-42, 49. doi: 10.3969/j.issn.1002-3550.2019.11.009

    Dang Xinghai, Zhou Qun, Cao Runzhuo, et al. Study on mechanical properties of shrinkage-compensating concrete by response surface method[J]. Concrete, 2019(11): 39-42, 49. doi: 10.3969/j.issn.1002-3550.2019.11.009
    [19] 唐岳松, 张令非, 吕华永. 煤基固废制备充填材料配比优化试验研究[J]. 矿业科学学报, 2019, 4(4): 327-336. http://kykxxb.cumtb.edu.cn/article/id/230

    Tang Yuesong, Zhang Lingfei, Lü Huayong. Study on proportion optimization of coal-based solid wastes filling materials[J]. Journal of Mining Science and Technology, 2019, 4(4): 327-336. http://kykxxb.cumtb.edu.cn/article/id/230
    [20] 周梅, 李高年, 张倩, 等. 自燃煤矸石骨料在预拌混凝土中的应用研究[J]. 建筑材料学报, 2015, 18(5): 830-835. doi: 10.3969/j.issn.1007-9629.2015.05.020

    Zhou Mei, Li Gaonian, Zhang Qian, et al. Study on application of spontaneous combustion coal gangue aggregate in ready-mixed concrete[J]. Journal of Building Materials, 2015, 18(5): 830-835. doi: 10.3969/j.issn.1007-9629.2015.05.020
    [21] Yang Z H, Huang J, Zeng G M, et al. Optimization of flocculation conditions for Kaolin suspension using the composite flocculant of MBFGA1 and PAC by response surface methodology[J]. Bioresource Technology, 2009, 100(18): 4233-4239. doi: 10.1016/j.biortech.2008.12.033
    [22] Alenyorege E A, Ma H L, Aheto J H, et al. Response surface methodology centred optimization of mono-frequency ultrasound reduction of bacteria in fresh-cut Chinese cabbage and its effect on quality[J]. LWT, 2020, 122: 108991. doi: 10.1016/j.lwt.2019.108991
    [23] 郝成亮, 郭金玉, 初茉, 等. 基于响应面法的长焰煤浮选工艺模型及因子作用分析[J]. 矿业科学学报, 2019, 4(6): 547-557. http://kykxxb.cumtb.edu.cn/article/id/257

    Hao Chengliang, Guo Jinyu, Chu Mo, et al. Analysis of models and factors of long flame coal flotation process by response surface methodology[J]. Journal of Mining Science and Technology, 2019, 4(6): 547-557. http://kykxxb.cumtb.edu.cn/article/id/257
    [24] 袁汉卿, 蒋友宝, 崔玉理, 等. 再生骨料透水混凝土的透水性和抗压强度[J]. 材料导报, 2018, 32(S2): 466-470. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2018S2106.htm

    Yuan Hanqing, Jiang Youbao, Cui Yuli, et al. Permeability and compressive strength of recycled aggregate permeable concrete[J]. Materials Review, 2018, 32(S2): 466-470. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2018S2106.htm
    [25] 蒋正武, 孙振平, 王培铭. 若干因素对多孔透水混凝土性能的影响[J]. 建筑材料学报, 2005, 8(5): 513-519. doi: 10.3969/j.issn.1007-9629.2005.05.008

    Jiang Zhengwu, Sun Zhenping, Wang Peiming. Effects of some factors on properties of porous pervious concrete[J]. Journal of Building Materials, 2005, 8(5): 513-519. doi: 10.3969/j.issn.1007-9629.2005.05.008
    [26] 李学德, 贾守刚, 杜应吉. 基于正交试验分析影响透水混凝土性能的主要因素[J]. 中国农村水利水电, 2011(11): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201111020.htm

    Li Xuede, Jia Shougang, Du Yingji. An analysis of the main factors of pervious concrete's properties based on orthogonal experiment[J]. China Rural Water and Hydropower, 2011(11): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201111020.htm
    [27] 吴秀峰, 周梅, 崔正龙. 自燃煤矸石粗集料对混凝土强度影响的试验研究[J]. 工业建筑, 2009, 39(3): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ200903027.htm

    Wu Xiufeng, Zhou Mei, Cui Zhenglong. The experiment research on concrete strength influence of self combustion coal gangue coarse aggregate[J]. Industrial Construction, 2009, 39(3): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ200903027.htm
    [28] 姜骞, 周华新, 谢德擎, 等. 透水混凝土增强剂对透水混凝土性能的影响[J]. 混凝土, 2018(1): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201801016.htm

    Jiang Qian, Zhou Huaxin, Xie Deqing, et al. Influence of pervious concrete reinforcing agent on the performance of pervious concrete[J]. Concrete, 2018(1): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201801016.htm
    [29] 付培江, 石云兴, 屈铁军, 等. 透水混凝土强度若干影响因素及收缩性能的试验研究[J]. 混凝土, 2009(8): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200908007.htm

    Fu Peijiang, Shi Yunxing, Qu Tiejun, et al. Experimental study on strength and shrinkage properties of pervious concrete[J]. Concrete, 2009(8): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200908007.htm
    [30] 张勇, 贾文文, 徐长科, 等. 不同因素对透水混凝土性能影响的研究[J]. 混凝土与水泥制品, 2017(11): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HNTW201711006.htm

    Zhang Yong, Jia Wenwen, Xu Changke, et al. Study on the effect of different factors on the properties of pervious concrete[J]. China Concrete and Cement Products, 2017(11): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HNTW201711006.htm
    [31] 李政. 不同水灰比对透水混凝土性能影响研究[J]. 湖南交通科技, 2019, 45(1): 56-58, 91. https://www.cnki.com.cn/Article/CJFDTOTAL-FLJT201901014.htm

    Li Zheng. Study on the effect of different water-cement ratio on the performance of permeable concrete[J]. Hunan Communication Science and Technology, 2019, 45(1): 56-58, 91. https://www.cnki.com.cn/Article/CJFDTOTAL-FLJT201901014.htm
    [32] 王靖, 刘钦焱, 蔡鹏, 等. 再生骨料透水混凝土的性能及影响因素研究[J]. 新型建筑材料, 2018, 45(9): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201809015.htm

    Wang Jing, Liu Qinyan, Cai Peng, et al. Experimental study on properties and influencing factors of recycled aggregate pervious concrete[J]. New Building Materials, 2018, 45(9): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201809015.htm
  • 加载中
图(11) / 表(10)
计量
  • 文章访问数:  513
  • HTML全文浏览量:  125
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-27
  • 修回日期:  2022-05-07
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回