留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3D打印地聚合物层间黏结强度及力学各向异性研究

郭晓潞 李树昊

郭晓潞, 李树昊. 3D打印地聚合物层间黏结强度及力学各向异性研究[J]. 矿业科学学报, 2022, 7(5): 538-543. doi: 10.19606/j.cnki.jmst.2022.05.004
引用本文: 郭晓潞, 李树昊. 3D打印地聚合物层间黏结强度及力学各向异性研究[J]. 矿业科学学报, 2022, 7(5): 538-543. doi: 10.19606/j.cnki.jmst.2022.05.004
Guo Xiaolu, Li Shuhao. Mechanical anisotropy and interlayer bonding strength of 3D printing geopolymer[J]. Journal of Mining Science and Technology, 2022, 7(5): 538-543. doi: 10.19606/j.cnki.jmst.2022.05.004
Citation: Guo Xiaolu, Li Shuhao. Mechanical anisotropy and interlayer bonding strength of 3D printing geopolymer[J]. Journal of Mining Science and Technology, 2022, 7(5): 538-543. doi: 10.19606/j.cnki.jmst.2022.05.004

3D打印地聚合物层间黏结强度及力学各向异性研究

doi: 10.19606/j.cnki.jmst.2022.05.004
基金项目: 

国家自然科学基金 52178241

国家重点研发计划专项 2021YFB3802001

国家重点研发计划专项 2019YFE0112600

详细信息
    作者简介:

    郭晓潞(1980—),女,山西长治人,博士,教授,博士生导师,主要从事先进土木工程材料、固体废弃物资源化利用等方面的研究工作。Tel:15216729086,E-mail:guoxiaolu@tongji.edu.cn

  • 中图分类号: TU57+8.12

Mechanical anisotropy and interlayer bonding strength of 3D printing geopolymer

  • 摘要: 3D打印地聚合物是一种兼具资源化利用及智能建造的新型建筑材料,其试件各方向上的力学性能和层间的黏结强度是影响建筑可建造性和耐久性的重要因素。以粉煤灰、石英砂为主要原材料,无水硅酸钠为碱激发剂,矿粉为辅助性胶凝材料,硅酸镁铝为专用外加剂,制备了3D打印粉煤灰基地聚合物砂浆;在最适宜掺量和配比下,3D打印出粉煤灰基地聚合物3D打印试件,研究了其层间黏结强度与抗拉强度,并且通过力学性能及超声波速表征其力学各向异性性能。
  • 图  1  3D打印地聚合物试件层间作用力取样方式示意图

    Figure  1.  Schematic diagram of sampling method for interlayer force of 3D printed geopolymer component

    图  2  层间作用力的测试示意图

    Figure  2.  Schematic diagram of testing method and device of interlayer force

    图  3  “狗骨形”试样的尺寸大小及模具

    Figure  3.  Size and die of "dog bone" sample

    图  4  各向异性力学性能取样及加载方式示意图及实物

    Figure  4.  Real figure and schematic diagram of sampling and loading method of anisotropic mechanical properties

    图  5  狗骨形试件抗拉强度与不同打印层数的打印试件的层间黏结强度值

    Figure  5.  Tensile strength of dog-bone components and interlayer bonding strength values of printed components with different printing layers

    图  6  试件不同方向的抗压强度

    Figure  6.  Compressive strength of members in different directions

    图  7  切割试块不同方向的超声波速

    Figure  7.  UPV in different directions of cutting test block

    图  8  不同状态下的超声图谱和波形

    Figure  8.  Ultrasonic spectrum in different states

    表  1  主要原材料的化学成分

    Table  1.   Chemical compositions of main raw materials  %

    化学组分 Na2O MgO Al2O3 SiO2 SO3 Fe2O3 K2O CaO TiO2 Loss
    粉煤灰 0.39 0.85 28.39 53.71 0.87 5.68 2.71 5.10 1.54 0.76
    矿粉 0.22 5.59 13.11 32.59 0.64 0.70 0.31 45.64 0.64 0.56
    下载: 导出CSV

    表  2  粉煤灰基3D打印地聚合物配合比设计

    Table  2.   Mix proportions of fly ash based geopolymer for 3D printing  g

    粉煤灰 矿粉 碱激发剂 石英砂 硅酸镁铝
    450.0 50.0 150.0 50.0 750.0 5.0
    下载: 导出CSV
  • [1] 张超, 邓智聪, 马蕾, 等. 3D打印混凝土研究进展及其应用[J]. 硅酸盐通报, 2021, 40(6): 1769-1795. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202106002.htm

    Zhang Chao, Deng Zhicong, Ma Lei, et al. Research progress and application of 3D printing concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1769-1795. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202106002.htm
    [2] Hager I, Golonka A, Putanowicz R. 3D printing of buildings and building components as the future of sustainable construction?[J]. Procedia Engineering, 2016, 151: 292-299. doi: 10.1016/j.proeng.2016.07.357
    [3] 王雨珅, 郝亮, 李正, 等. 3D打印地质聚合物的研究进展和应用探索[J]. 中国建材科技, 2021, 30(3): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKJ202103007.htm

    Wang Yushen, Hao Liang, Li Zheng, et al. Research progress and application exploration of 3D printing geopolymer[J]. China Building Materials Science & Technology, 2021, 30(3): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKJ202103007.htm
    [4] 张慧琳, 程磊. 3D打印用地质聚合物配合比的优化试验[J]. 低温建筑技术, 2020, 42(4): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW202004009.htm

    Zhang Huilin, Cheng Lei. Optimization tests of geopolymer mixture ratio for 3D printing[J]. Low Temperature Architecture Technology, 2020, 42(4): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW202004009.htm
    [5] Tay Y W D, Panda B, Paul S C, et al. 3D printing trends in building and construction industry: a review[J]. Virtual and Physical Prototyping, 2017, 12(3): 261-276. doi: 10.1080/17452759.2017.1326724
    [6] Kothman I, Faber N. How 3D printing technology changes the rules of the game[J]. Journal of Manufacturing Technology Management, 2016, 27(7): 932-943. doi: 10.1108/JMTM-01-2016-0010
    [7] Bos F, Wolfs R, Ahmed Z, et al. Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing[J]. Virtual and Physical Prototyping, 2016, 11(3): 209-225. doi: 10.1080/17452759.2016.1209867
    [8] Le T T, Austin S A, Lim S, et al. Mix design and fresh properties for high-performance printing concrete[J]. Materials and Structures, 2012, 45(8): 1221-1232. doi: 10.1617/s11527-012-9828-z
    [9] 李福平, 邓春林, 万晶. 3D打印建筑技术与商品混凝土行业展望[J]. 混凝土世界, 2013(3): 28-29. https://www.cnki.com.cn/Article/CJFDTOTAL-JZSJ201303007.htm

    Li Fuping, Deng Chunlin, Wan Jing. Prospect of 3D printing construction technology and commercial concrete industry[J]. China Concrete, 2013(3): 28-29. https://www.cnki.com.cn/Article/CJFDTOTAL-JZSJ201303007.htm
    [10] Han Y L, Yang Z H, Ding T, et al. Environmental and economic assessment on 3D printed buildings with recycled concrete[J]. Journal of Cleaner Production, 2021, 278: 123884. doi: 10.1016/j.jclepro.2020.123884
    [11] Garg A, Vijayaraghavan V, Zhang J, et al. Robust model design for evaluation of power characteristics of the cleaner energy system[J]. Renewable Energy, 2017, 112: 302-313. doi: 10.1016/j.renene.2017.05.041
    [12] Kaur M, Singh J, Kaur M. Synthesis of fly ash based geopolymer mortar considering different concentrations and combinations of alkaline activator solution[J]. Ceramics International, 2018, 44(2): 1534-1537. doi: 10.1016/j.ceramint.2017.10.071
    [13] Garg A, Li J H, Hou J J, et al. A new computational approach for estimation of wilting point for green infrastructure[J]. Measurement, 2017, 111: 351-358. doi: 10.1016/j.measurement.2017.07.026
    [14] Panda B, Paul S C, Hui L J, et al. Additive manufacturing of geopolymer for sustainable built environment[J]. Journal of Cleaner Production, 2017, 167: 281-288. doi: 10.1016/j.jclepro.2017.08.165
    [15] Nematollahi B, Xia M, Sanjayan J, et al. Effect of type of fiber on inter-layer bond and flexural strengths of extrusion-based 3D printed geopolymer[J]. Materials Science Forum, 2018, 939: 155-162. doi: 10.4028/www.scientific.net/MSF.939.155
    [16] Guo X L, Yang J Y, Xiong G Y. Influence of supplementary cementitious materials on rheological properties of 3D printed fly ash based geopolymer[J]. Cement and Concrete Composites, 2020, 114: 103820. doi: 10.1016/j.cemconcomp.2020.103820
    [17] 郭晓潞, 杨君奕, 熊归砚. 硅酸镁铝及静置时间对3D打印地聚合物砂浆流变性能的影响[J]. 建筑材料学报, 2022, 25(1): 89-96. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX202201013.htm

    Guo Xiaolu, Yang Junyi, Xiong Guiyan. Effect of magnesium aluminum silicate and rest time on rheological property of 3D printing geopolymer mortar[J]. Journal of Building Materials, 2022, 25(1): 89-96. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX202201013.htm
    [18] Lencis U, Udris A, Korjakins A. Frost influence on the ultrasonic pulse velocity in concrete at early phases of hydration process[J]. Case Studies in Construction Materials, 2021, 15: 00614.
    [19] Solís-Carcaño R, Moreno E I. Evaluation of concrete made with crushed limestone aggregate based on ultrasonic pulse velocity[J]. Construction and Building Materials, 2008, 22(6): 1225-1231. doi: 10.1016/j.conbuildmat.2007.01.014
    [20] Guo X L, Xiong G Y, Zhang H M. In-situ evaluation of self-healing performance of Engineered Geopolymer Composites (EGC)by ultrasonic method[J]. Materials Letters, 2020, 280: 128546. doi: 10.1016/j.matlet.2020.128546
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  378
  • HTML全文浏览量:  91
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-24
  • 修回日期:  2022-03-29
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回