留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于断裂力学的层状岩石Hoek-Brown准则修正模型研究

李英杰 王炳乾 左建平 薛东杰 刘德军

李英杰, 王炳乾, 左建平, 薛东杰, 刘德军. 基于断裂力学的层状岩石Hoek-Brown准则修正模型研究[J]. 矿业科学学报, 2022, 7(4): 481-489. doi: 10.19606/j.cnki.jmst.2022.04.010
引用本文: 李英杰, 王炳乾, 左建平, 薛东杰, 刘德军. 基于断裂力学的层状岩石Hoek-Brown准则修正模型研究[J]. 矿业科学学报, 2022, 7(4): 481-489. doi: 10.19606/j.cnki.jmst.2022.04.010
Li Yingjie, Wang Bingqian, Zuo Jianping, Xue Dongjie, Liu Dejun. Modified Hoek-Brown criterion model for laminated rock based on fracture mechanics[J]. Journal of Mining Science and Technology, 2022, 7(4): 481-489. doi: 10.19606/j.cnki.jmst.2022.04.010
Citation: Li Yingjie, Wang Bingqian, Zuo Jianping, Xue Dongjie, Liu Dejun. Modified Hoek-Brown criterion model for laminated rock based on fracture mechanics[J]. Journal of Mining Science and Technology, 2022, 7(4): 481-489. doi: 10.19606/j.cnki.jmst.2022.04.010

基于断裂力学的层状岩石Hoek-Brown准则修正模型研究

doi: 10.19606/j.cnki.jmst.2022.04.010
基金项目: 

国家自然科学基金 51604275

大学生创新训练 C202006003

详细信息
    作者简介:

    李英杰(1979—),女,辽宁锦州人,博士,副教授,博士生导师,主要从事岩石力学、断裂力学理论及地下工程围岩稳定性方面的研究工作。Tel: 15120075623, E-mail: lyj2015@cumtb.edu.cn

    通讯作者:

    左建平(1978—),男,江西高安人,博士,教授,博士生导师,主要从事采矿岩石力学与岩层控制方面的研究工作。Tel: 18910397078,E-mail: zjp@cumtb.edu.cn

  • 中图分类号: TU452

Modified Hoek-Brown criterion model for laminated rock based on fracture mechanics

  • 摘要: 本文基于各向同性Hoek-Brown强度准则的断裂力学理论,从层状岩石细观断裂机理出发,分析初始微裂纹沿层理分叉后起裂条件,考虑初始裂纹引发岩石破裂的临界角,建立层理弱面主导裂纹偏转的参数m1各向异性公式,引入考虑岩石沿层理和基质混合破裂修正系数,得到Hoek-Brown强度准则的各向异性修正模型。对比其他各向异性Hoek-Brown模型以及页岩三轴试验结果证明了模型的有效性。修正模型继承了各向同性Hoek-Brown强度准则的断裂力学理论对于岩石破坏特征量的选择,反映了岩石的细观破坏机理,同时考虑层理各向异性的影响,准则中的相关参数物理意义明确。模型中参数m与层理面角度、层理及岩石的抗拉强度、抗压强度、摩擦系数有关,其中层理面摩擦系数的变化会引起参数m极小值点位置及岩石强度特性发生改变。
  • 图  1  等围压下单裂纹断裂力学模型[12]

    Figure  1.  Fracture mechanical model of single crack under constant confining pressure

    图  2  等围压下层状岩石含单裂纹断裂力学模型

    Figure  2.  Fracture mechanics model of bedding rock with single crack under constant confining pressure

    图  3  分叉裂纹尖端几何与受力示意图

    x′y′—初始裂纹尖端坐标系;r′θ′—初始裂纹尖端极坐标系;x y —分叉裂纹尖端坐标系;rθ—分叉裂纹尖端极坐标系;σrr—初始裂纹尖端径向应力;σθθ—初始裂纹尖端切向应力;τrθ—初始裂纹尖端剪应力

    Figure  3.  Geometry and stress of the branch crack system

    图  4  参数α敏感性曲线

    Figure  4.  Sensitivity curve of parameter α

    图  5  参数μ′敏感性曲线

    Figure  5.  Sensitivity curve of parameter μ′

    图  6  龙马溪组、牛蹄塘组不同层理角度页岩修正的Hoek-Brown准则曲线及三轴实验结果对比

    Figure  6.  Comparison of modified Hoek-Brown criterion curve with triaxial experimental results for Longmaxi and Niutitang shales with different bedding angles

    图  7  板岩三轴实验结果、修正的Hoek-Brown模型及Pietruszezak模型曲线对比

    Figure  7.  Comparison of modified Hoek-Brown criterion curve with triaxial experimental results and Pietruszezak model curve for slate

    表  1  修正的Hoek-Brown准则相关参数拟合结果

    Table  1.   The determination of parameters for the modified Hoek-Brown criterion

    岩样 m0 m2 θ/(°)
    页岩1 5.95 11.14 60.72
    页岩2 2.865 6.612 55.79
    页岩3 8.179 15.42 61.88
    页岩4 1.741 4.913 52.15
    板岩 18.39 25.24 61.42
    下载: 导出CSV

    表  2  修正的Hoek-Brown准则三轴压缩实验拟合结果

    Table  2.   Fitting results of modified Hoek-Brown criterion for triaxial compression test

    参数 岩样 β=0° β=15° β=30° β=45° β=60° β=75° β=90°
    修正系数
    α
    页岩1 1 1 0 0.337 6
    页岩2 0.454 5 1 0.830 6 0.762 2 0 0.555 6 0.043 0
    页岩3 0.938 7 1 0.904 4 0.609 6 0.000 7 1 0.813 4
    页岩4 1 0.130 0 0 0.157 5 0.919 6
    板岩 0.398 7 0 0.166 9 1
    拟合优度
    R2
    页岩1 0.974 5 0.975 3 0.976 9 0.966 3
    页岩2 0.991 0 0.965 7 0.945 9 0.967 6 0.880 6 0.946 0 0.928 4
    页岩3 0.934 1 0.889 5 0.955 9 0.950 4 0.968 3 0.946 7 0.902 5
    页岩4 0.980 7 0.986 0 0.971 9 0.905 8 0.883 9
    板岩 0.991 4 0.976 4 0.988 6 0.988 3
    下载: 导出CSV

    表  3  Pietruszczak各向异性模型参数拟合结果

    Table  3.   The determination of parameters for the Pietruszczak modified Hoek-Brown criterion

    岩样 a1 a2 Ω0
    页岩1 13.43 -5.766 0.322 4
    页岩2 3.282 0.921 -0.554 3
    页岩3 -701.2 711.4 -0.000 6
    页岩4 -227.9 231.3 -0.000 4
    板岩 -5 594 5 618 0.000 2
    下载: 导出CSV

    表  4  Pietruszczak各向异性修正模型对三轴压缩实验拟合结果

    Table  4.   Fitting results of Pietruszczak model for triaxial compression test

    参数 岩样 β=0° β=15° β=30° β=45° β=60° β=75° β=90°
    拟合优度
    R2
    页岩1 0.988 3 0.943 2 0.960 9 0.957 6
    页岩2 0.936 5 0.899 6 0.933 3 0.941 0 0.835 6 0.900 6 0.924 8
    页岩3 0.934 1 0.882 5 0.951 6 0.947 9 0.899 6 0.878 6 0.893 6
    页岩4 0.589 4 0.922 6 0.881 2 0.857 5 0.563 5
    板岩 0.986 3 0.972 8 0.982 0 0.960 3
    下载: 导出CSV
  • [1] 唐杰, 吴国忱. 低孔隙度泥页岩应力依赖的各向异性裂纹演化特性研究[J]. 地球物理学报, 2015, 58(8): 2986-2995. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201508031.htm

    Tang Jie, Wu Guochen. Stress-dependent anisotropy of mudstone and shale with low porosity[J]. Chinese Journal of Geophysics, 2015, 58(8): 2986-2995. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201508031.htm
    [2] Kanfar M F, Chen Z, Rahman S S. Effect of material anisotropy on time-dependent wellbore stability[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 78: 36-45. doi: 10.1016/j.ijrmms.2015.04.024
    [3] Kuila U, Dewhurst D N, Siggins A F, et al. Stress anisotropy and velocity anisotropy in low porosity shale[J]. Tectonophysics, 2011, 503(1/2): 34-44.
    [4] Heng S, Guo Y T, Yang C H, et al. Experimental and theoretical study of the anisotropic properties of shale[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 74: 58-68. doi: 10.1016/j.ijrmms.2015.01.003
    [5] 杨国梁, 毕京九, 张志飞, 等. 被动围压下层理角度对页岩动态强度及耗能的影响[J]. 矿业科学学报, 2021, 6(2): 188-195. doi: 10.19606/j.cnki.jmst.2021.02.006

    Yang Guoliang, Bi Jingjiu, Zhang Zhifei, et al. The influence of the bedding angle under passive confining pressure on the dynamic strength and energy consumption of shale[J]. Journal of Mining Science and Technology, 2021, 6(2): 188-195. doi: 10.19606/j.cnki.jmst.2021.02.006
    [6] Jaeger J C. Shearfailure of anistropicrocks[J]. Geological Magazine, 1960, 97(1): 65-72. doi: 10.1017/S0016756800061100
    [7] 刘亚群, 李海波, 李俊如, 等. 基于Hoek-Brown准则的板岩强度特征研究[J]. 岩石力学与工程学报, 2009, 28(S2): 3452-3457. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S2028.htm

    Liu Yaqun, Li Haibo, Li Junru, et al. Study on strength characteristics of slates based on hoek-brown criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S2): 3452-3457. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S2028.htm
    [8] Hoek E, Brown E T. Underground excavations in Rock[M]. London: The Institution of Mining and Metallurgy, 1980.
    [9] Hoek E., Kaiser P K, Bawden W F. Support of underground excavations in hard rock[M]. Rotterdam, A.A. Balkena, 1995.
    [10] 李全生, 徐祝贺, 张勇, 等. 基于Hoek-Brown准则的薄基岩厚松散层覆岩变形破坏特征研究[J]. 矿业科学学报, 2019, 4(5): 417-424. http://kykxxb.cumtb.edu.cn/article/id/241

    Li Quansheng, Xu Zhuhe, Zhang Yong, et al. Study on deformation and failure characteristics of overlying strata with thick loose layers and thin bedrock based on Hoek-Brown criterion[J]. Journal of Mining Science and Technology, 2019, 4(5): 417-424. http://kykxxb.cumtb.edu.cn/article/id/241
    [11] Zuo J P, Li H T, Xie H P, et al. A nonlinear strength criterion for rock-like materials based on fracture mechanics[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(4): 594-599. doi: 10.1016/j.ijrmms.2007.05.010
    [12] 李洪涛, 左建平, 李辉. Hoek-Brown强度准则的断裂力学理论研究[J]. 岩土工程学报, 2004, 26(2): 212-215. doi: 10.3321/j.issn:1000-4548.2004.02.011

    Li Hongtao, ZuoJianping, Li Hui. Theoretical research of Hoek-Brown empirical strength criterion[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 212-215. doi: 10.3321/j.issn:1000-4548.2004.02.011
    [13] Zuo J P, Liu H H, Li H T. A theoretical derivation of the Hoek-Brown failure criterion for rock materials[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(4): 361-366. doi: 10.1016/j.jrmge.2015.03.008
    [14] Saroglou H, Tsiambaos G. A modified Hoek-Brown failure criterion for anisotropic intact rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(2): 223-234. doi: 10.1016/j.ijrmms.2007.05.004
    [15] Lee Y K, Pietruszczak S. Application of critical plane approach to the prediction of strength anisotropy in transversely isotropic rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(4): 513-523. doi: 10.1016/j.ijrmms.2007.07.017
    [16] Ismael M A, Imam H F, El-Shayeb Y. A simplified approach to directly consider intact rock anisotropy in Hoek-Brown failure criterion[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(5): 486-492. doi: 10.1016/j.jrmge.2014.06.003
    [17] Shi X C, Yang X, Meng Y F, et al. Modified Hoek-Brown failure criterion for anisotropic rocks[J]. Environmental Earth Sciences, 2016, 75(11): 1-11.
    [18] 高岳. 各向异性多孔材料的强度与断裂问题研究[D]. 北京: 清华大学, 2018.
    [19] Hou C, Jin X C, Fan X L, et al. A generalized maximum energy release rate criterion for mixed mode fracture analysis of brittle and quasi-brittle materials[J]. Theoretical and Applied Fracture Mechanics, 2019, 100: 78-85. doi: 10.1016/j.tafmec.2018.12.015
    [20] Williams M L. On the stress distribution at the base of a stationary crack[J]. Journal of Applied Mechanics, 1957, 24(1): 109-114. doi: 10.1115/1.4011454
    [21] Wang Y, Li C H, Hu Y Z. Experimentalinvestigation on the fracture behaviour of black shale by acoustic emission monitoring and CT image analysis during uniaxial compression[J]. Geophysical Journal International, 2018, 213(1): 660-675. doi: 10.1093/gji/ggy011
    [22] 贾长贵, 陈军海, 郭印同, 等. 层状页岩力学特性及其破坏模式研究[J]. 岩土力学, 2013, 34(S2): 57-61. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S2010.htm

    Jia Changgui, Chen Junhai, Guo Yintong, et al. Research on mechanical behaviors and failure modes of layer shale[J]. Rock and Soil Mechanics, 2013, 34(S2): 57-61. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S2010.htm
    [23] 何柏, 谢凌志, 李凤霞, 等. 龙马溪页岩各向异性变形破坏特征及其机理研究[J]. 中国科学: 物理学力学天文学, 2017, 47(11): 107-118. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201711012.htm

    He Bo, Xie Lingzhi, Li Fengxia, et al. Anisotropic mechanism and characteristics of deformation and failure of Longmaxi shale[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2017, 47(11): 107-118. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201711012.htm
    [24] 桑宇, 杨胜来, 赵飞, 等. 南方海相页岩各向异性及压裂破坏特征研究[J]. 钻采工艺, 2015, 38(2): 71-74, 10. doi: 10.3969/J.ISSN.1006-768X.2015.02.20

    Sang Yu, Yang Shenglai, Zhao Fei, et al. Research on anisotropy and failure characteristics of southern marine shale rock[J]. Drilling & Production Technology, 2015, 38(2): 71-74, 10. doi: 10.3969/J.ISSN.1006-768X.2015.02.20
    [25] 陈天宇, 冯夏庭, 张希巍, 等. 黑色页岩力学特性及各向异性特性实验研究[J]. 岩石力学与工程学报, 2014, 33(9): 1772-1779. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409007.htm

    Chen Tianyu, Feng Xiating, Zhang Xiwei, et al. Experimental study on mechanical and anisotropic properties of black shale[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1772-1779. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409007.htm
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  361
  • HTML全文浏览量:  182
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-22
  • 修回日期:  2021-11-15
  • 刊出日期:  2022-08-30

目录

    /

    返回文章
    返回