留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于真实细观结构的FFT数值方法对岩石材料非线性力学行为的研究

李明耀 彭磊 左建平 王智敏 李绍金 薛喜仁

李明耀, 彭磊, 左建平, 王智敏, 李绍金, 薛喜仁. 基于真实细观结构的FFT数值方法对岩石材料非线性力学行为的研究[J]. 矿业科学学报, 2022, 7(4): 456-466. doi: 10.19606/j.cnki.jmst.2022.04.007
引用本文: 李明耀, 彭磊, 左建平, 王智敏, 李绍金, 薛喜仁. 基于真实细观结构的FFT数值方法对岩石材料非线性力学行为的研究[J]. 矿业科学学报, 2022, 7(4): 456-466. doi: 10.19606/j.cnki.jmst.2022.04.007
Li Mingyao, Peng Lei, Zuo Jianping, Wang Zhimin, Li Shaojin, Xue Xiren. Study of the nonlinear mechanical behavior of rock materials using the FFT numerical method based on the actual mesostructure[J]. Journal of Mining Science and Technology, 2022, 7(4): 456-466. doi: 10.19606/j.cnki.jmst.2022.04.007
Citation: Li Mingyao, Peng Lei, Zuo Jianping, Wang Zhimin, Li Shaojin, Xue Xiren. Study of the nonlinear mechanical behavior of rock materials using the FFT numerical method based on the actual mesostructure[J]. Journal of Mining Science and Technology, 2022, 7(4): 456-466. doi: 10.19606/j.cnki.jmst.2022.04.007

基于真实细观结构的FFT数值方法对岩石材料非线性力学行为的研究

doi: 10.19606/j.cnki.jmst.2022.04.007
基金项目: 

国家自然科学基金 11802332

煤炭资源与安全开采国家重点实验室-北京高等学校卓越青年科学家计划项目联合基金 BJJWZYJH01201911413037

煤炭资源与安全开采国家重点实验室-北京高等学校卓越青年科学家计划项目联合基金 SKLCRSM21LH02

中央高校基本科研业务费专项资金 2020YQLJ08

详细信息
    作者简介:

    李明耀(1986—),男,陕西岐山人,博士,副教授,主要从事多尺度多场耦合岩石本构理论及数值计算方法的研究工作。Tel:13718778275,E-mail:mingyao.li@cumtb.edu.cn

    通讯作者:

    左建平(1978—),男,江西高安人,博士,教授,主要从事岩石力学、损伤、断裂及数值计算等方面的研究工作。Tel:18910397078,E-mail:zjp@cumtb.edu.cn

  • 中图分类号: TD313

Study of the nonlinear mechanical behavior of rock materials using the FFT numerical method based on the actual mesostructure

  • 摘要: 岩石的非均质性(矿物夹杂、微裂隙、微孔洞等细观结构)对其非线性力学行为和破坏过程有着显著影响。本文采用无需对复杂细观结构划分网格的快速傅立叶变换(FFT)数值方法,直接获取图像中的像素点作为材料点,准确得到非均质材料的细观结构特征和力学性质的特点,与数字图像处理(DIP)技术有机结合,建立了基于真实细观结构的FFT数值计算方法,模拟了非均质岩石在外荷载作用下的弹塑性变形过程,探究了岩石内部细观结构对非线性力学行为的影响规律与宏观力学性质的内在联系。研究结果表明:基于真实细观结构的FFT模型,能很好地预测不同埋深和不同围压条件下黏土岩的峰前非线性行为和峰值强度,细观结构的形状、大小和分布直接决定了黏土岩内部应力场的分布。研究结论为研究岩石细观结构特征及其非线性力学行为提供了一个重要手段。
  • 图  1  COx黏土岩灰度图像

    Figure  1.  Gray image of the COx claystone

    图  2  基于COx黏土岩细观结构表征的流程

    Figure  2.  Flow chart based on microstructural characterization of COx clay rock

    图  3  方解石矿物的表征过程

    Figure  3.  Feldspar mineral characterization process

    图  4  石英矿物的表征过程

    Figure  4.  Process of quartz mineral characterization

    图  5  COx黏土岩的细观结构表征

    Figure  5.  Microscopic characterization of COx argillaceous rocks

    图  6  材料点生成过程[18]

    Figure  6.  Material point generation process

    图  7  基于真实细观结构的FFT数值计算方法流程

    Figure  7.  Flow chart of the actual-mesostructure-based FFT numerical method

    图  8  像素对边界的影响[31]

    Figure  8.  The effect of the pixel on the boundary

    图  9  细观结构和局部本构模型的关系[12]

    Figure  9.  Relationship between microstructure and local constitutive model

    图  10  参数标定

    Figure  10.  Parameter calibration

    图  11  数值模拟与三轴压缩实验数据的对比

    Figure  11.  Comparison of numerical simulation and experimental data

    图  12  细观结构特征与局部应力

    Figure  12.  Microstructure and local stress

    图  13  细观结构应力演化对宏观力学行为的影响

    Figure  13.  Influence of microstructure stress evolution on the macroscopic mechanical behavior

    表  1  COx黏土岩细观介质的弹性参数[32]

    Table  1.   Elastic parameters of meso-medium of COx clay rock

    材料 弹性模量/GPa 泊松比
    石英 101 0.06
    方解石 95 0.27
    黏土 3 0.3
    下载: 导出CSV

    表  2  不同深度各种矿物的含量[32]

    Table  2.   The content of various minerals at different depths

    深度/m 石英含量/% 方解石含量/% 黏土含量/%
    实测 模拟 实测 模拟 实测 模拟
    451.5 32 29 19 18 49 53
    451.4 22 21 31 27 47 52
    469.0 23 20 33 31 44 49
    469.1 22 21 23 24 55 55
    482.2 14 13 26 26 60 61
    下载: 导出CSV
  • [1] 陈沙, 岳中琦, 谭国焕. 基于真实细观结构的岩土工程材料三维数值分析方法[J]. 岩石力学与工程学报, 2006, 25(10): 1951-1959. doi: 10.3321/j.issn:1000-6915.2006.10.002

    Chen Sha, Yue Zhongqi, Tan Guohuan. Actual mesostructure based three-dimensional numerical modeling method for heterogeneous geomaterials[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(10): 1951-1959. doi: 10.3321/j.issn:1000-6915.2006.10.002
    [2] 程虹铭, 杨小彬, 刘隽嘉, 等. 基于损伤演化的砂岩能量参数围压效应研究[J]. 矿业科学学报, 2020, 5(3): 249-256. http://kykxxb.cumtb.edu.cn/article/id/286

    Cheng Hongming, Yang Xiaobin, Liu Junjia, et al. Confining pressure effect on energy parameters of sandstones based on damage evolution[J]. Journal of Mining Science and Technology, 2020, 5(3): 249-256. http://kykxxb.cumtb.edu.cn/article/id/286
    [3] 滕腾, 杜玉冰, 陈朋飞, 等. 砂岩变形率与水理效应的力学特性研究[J]. 矿业科学学报, 2020, 5(3): 342-352. http://kykxxb.cumtb.edu.cn/article/id/298

    Teng Teng, Du Yubing, Chen Pengfei, et al. Effects of deformation rate and hydrated condition on the mechanical property of sandstone[J]. Journal of Mining Science and Technology, 2020, 5(3): 342-352. http://kykxxb.cumtb.edu.cn/article/id/298
    [4] Mahabadi O K, Randall N X, Zong Z, et al. A novel approach for micro-scale characterization and modeling of geomaterials incorporating actual material heterogeneity[J]. Geophysical Research Letters, 2012, 39(1): 1303.
    [5] Mahabadi O K, Tatone B S A, Grasselli G. Influence of microscale heterogeneity and microstructure on the tensile behavior of crystalline rocks[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(7): 5324-5341. doi: 10.1002/2014JB011064
    [6] Jing L. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(3): 283-353. doi: 10.1016/S1365-1609(03)00013-3
    [7] 李德建, 祁浩, 李春晓, 等. 含层理面煤试样的巴西圆盘劈裂实验及数值模拟研究[J]. 矿业科学学报, 2020, 5(2): 150-159. http://kykxxb.cumtb.edu.cn/article/id/275

    Li Dejian, Qi Hao, Li Chunxiao, et al. Brazilian disc splitting tests and numerical simulations on coal samples containing bedding planes[J]. Journal of Mining Science and Technology, 2020, 5(2): 150-159. http://kykxxb.cumtb.edu.cn/article/id/275
    [8] 于庆磊, 杨天鸿, 郑超, 等. 岩石细观结构对其变形强度影响的数值分析[J]. 岩土力学, 2011, 32(11): 3468-3472. doi: 10.3969/j.issn.1000-7598.2011.11.044

    Yu Qinglei, Yang Tianhong, Zheng Chao, et al. Numerical analysis of influence of rock mesostructure on its deformation and strength[J]. Rock and Soil Mechanics, 2011, 32(11): 3468-3472. doi: 10.3969/j.issn.1000-7598.2011.11.044
    [9] 朱泽奇, 肖培伟, 盛谦, 等. 基于数字图像处理的非均质岩石材料破坏过程模拟[J]. 岩土力学, 2011, 32(12): 3780-3786. doi: 10.3969/j.issn.1000-7598.2011.12.040

    Zhu Zeqi, Xiao Peiwei, Sheng Qian, et al. Numerical simulation of fracture propagation of heterogeneous rock material based on digital image processing[J]. Rock and Soil Mechanics, 2011, 32(12): 3780-3786. doi: 10.3969/j.issn.1000-7598.2011.12.040
    [10] Hu X J, Xie N, Zhu Q Z, et al. Modeling damage evolution in heterogeneous granite using digital image-based Grain-Based Model[J]. Rock Mechanics and Rock Engineering, 2020: 4925-4945.
    [11] 韩振华, 张路青, 周剑, 等. 矿物粒径对花岗岩单轴压缩特性影响的试验与模拟研究[J]. 工程地质学报, 2019, 27(3): 497-504. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201903005.htm

    Han Zhenhua, Zhang Luqing, Zhou Jian, et al. Uniaxial compression test and numerical studies of grain size effect on mechanical properties of granite[J]. Journal of Engineering Geology, 2019, 27(3): 497-504. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201903005.htm
    [12] Li M Y, Zuo J P, Hu D W, et al. Experimental and numerical investigation of microstructure effect on the mechanical behavior and failure process of brittle rocks[J]. Computers and Geotechnics, 2020, 125: 103639. doi: 10.1016/j.compgeo.2020.103639
    [13] Escoda J, Willot F, Jeulin D, et al. Estimation of local stresses and elastic properties of a mortar sample by FFT computation of fields on a 3D image[J]. Cement and Concrete Research, 2011, 41(5): 542-556. doi: 10.1016/j.cemconres.2011.02.003
    [14] Li M Y, Cao Y J, Shen W Q, et al. A damage model of mechanical behavior of porous materials: application to sandstone[J]. International Journal of Damage Mechanics, 2018, 27(9): 1325-1351. doi: 10.1177/1056789516685379
    [15] Manouchehrian A, Cai M. Influence of material heterogeneity on failure intensity in unstable rock failure[J]. Computers and Geotechnics, 2016, 71: 237-246. doi: 10.1016/j.compgeo.2015.10.004
    [16] Li M Y, Shen W Q, Shao J F. A numerical study of effective mechanical behaviors of rock like materials based on Fast Fourier Transform[J]. Mechanics of Materials, 2016, 92: 275-288. doi: 10.1016/j.mechmat.2015.10.004
    [17] Yue Z Q, Chen S, Tham L G. Finite element modeling of geomaterials using digital image processing[J]. Computers and Geotechnics, 2003, 30(5): 375-397. doi: 10.1016/S0266-352X(03)00015-6
    [18] Wu Z J, Ji X K, Liu Q S, et al. Study of microstructure effect on the nonlinear mechanical behavior and failure process of rock using an image-based-FDEM model[J]. Computers and Geotechnics, 2020, 121: 103480. doi: 10.1016/j.compgeo.2020.103480
    [19] Tan X, Konietzky H, Chen W. Numerical simulation of heterogeneous rock using discrete element model based on digital image processing[J]. Rock Mechanics and Rock Engineering, 2016, 49(12): 4957-4964. doi: 10.1007/s00603-016-1030-0
    [20] Yang Y T, Xu D D, Zheng H. Explicit discontinuous deformation analysis method with lumped mass matrix for highly discrete block system[J]. International Journal of Geomechanics, 2018, 18(9): 1-10.
    [21] Ghossein E, Levesque M. A comprehensive validation of analytical homogenization models: The case of ellipsoidal particles reinforced composites[J]. Mechanics of Materials, 2014, 75: 135-150. doi: 10.1016/j.mechmat.2014.03.014
    [22] Liu H Y, Kou S Q, Lindqvist P A, et al. Numerical modelling of the heterogeneous rock fracture process using various test techniques[J]. Rock Mechanics and Rock Engineering, 2007, 40(2): 107-144. doi: 10.1007/s00603-006-0091-x
    [23] 岳中琦, 陈沙, 郑宏, 等. 岩土工程材料的数字图像有限元分析[J]. 岩石力学与工程学报, 2004, 23(6): 889-897. doi: 10.3321/j.issn:1000-6915.2004.06.002

    Yue Zhongqi, Chen Sha, Zheng Hong, et al. Digital image proceeding based on finite element method for geomaterials[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(6): 889-897. doi: 10.3321/j.issn:1000-6915.2004.06.002
    [24] Ghossein E, Levesque M. A fully automated numerical tool for a comprehensive validation of homogenization models and its application to spherical particles reinforced composites[J]. International Journal of Solids and Structures, 2012, 49(11-12): 1387-1398. doi: 10.1016/j.ijsolstr.2012.02.021
    [25] Robinet J C. Minéralogie, porosité et diffusion des solutés dans l'argilite du Callovo-Oxfordien de Bure (Meuse, Haute-Marne, France) de l'échelle centimétrique à micrométrique[D]. France: Universit de poitiers, 2008.
    [26] 于庆磊. 基于数字图像的岩石类材料破裂过程分析方法研究[D]. 沈阳: 东北大学, 2008.
    [27] Moulinec H, Suquet P. A fast numerical method for computing the linear and nonlinear mechanical properties of composites[J]. Cmes-Computer Modeling in Engineering and Sciences, 1994, 318(11): 1417-1423.
    [28] Moulinec H, Suquet P. A numerical method for computing the overall response of nonlinear composites with complex microstructure[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 157(1/2): 69-94.
    [29] Mahabadi O K, Lisjak A, Munjiza A, et al. Y-geo: New combined finite-discrete element numerical code for geomechanical applications[J]. International Journal of Geomechanics, 2012, 12(6): 676-688. doi: 10.1061/(ASCE)GM.1943-5622.0000216
    [30] 凌天龙, 刘殿书, 梁书锋, 等. 花岗岩损伤型黏弹性动态本构模型研究[J]. 矿业科学学报, 2019, 4(5): 403-409. http://kykxxb.cumtb.edu.cn/article/id/239

    Ling Tianlong, Liu Dianshu, Liang Shufeng, et al. Research on damage viscoelastic dynamic constitutive model of granite[J]. Journal of Mining Science and Technology, 2019, 4(5): 403-409. http://kykxxb.cumtb.edu.cn/article/id/239
    [31] Li Mingyao. Contribution à la modélisation multi-échelle du comportement mécanique des matériaux rocheux[D]. France: Université de Lille 1 Sciences et Technologies, 2015.
    [32] Guery A A C, Cormery F, Shao J F, et al. A micromechanical model of elastoplastic and damage behavior of a cohesive geomaterial[J]. International Journal of Solids and Structures, 2008, 45(5): 1406-1429. doi: 10.1016/j.ijsolstr.2007.09.025
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  453
  • HTML全文浏览量:  126
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-02
  • 修回日期:  2021-09-14
  • 刊出日期:  2022-08-30

目录

    /

    返回文章
    返回