留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于地质统计学反演的透明化矿山岩性建模参数研究及应用

陈柏平 崔凡 刘波 杜云飞 王子昌

陈柏平, 崔凡, 刘波, 杜云飞, 王子昌. 基于地质统计学反演的透明化矿山岩性建模参数研究及应用[J]. 矿业科学学报, 2022, 7(4): 427-436. doi: 10.19606/j.cnki.jmst.2022.04.004
引用本文: 陈柏平, 崔凡, 刘波, 杜云飞, 王子昌. 基于地质统计学反演的透明化矿山岩性建模参数研究及应用[J]. 矿业科学学报, 2022, 7(4): 427-436. doi: 10.19606/j.cnki.jmst.2022.04.004
Chen Baiping, Cui Fan, Liu Bo, Du Yunfei, Wang Zichang. Research and application of inversion parameters based on geological statistics inversion in transparent mines rock major modeling[J]. Journal of Mining Science and Technology, 2022, 7(4): 427-436. doi: 10.19606/j.cnki.jmst.2022.04.004
Citation: Chen Baiping, Cui Fan, Liu Bo, Du Yunfei, Wang Zichang. Research and application of inversion parameters based on geological statistics inversion in transparent mines rock major modeling[J]. Journal of Mining Science and Technology, 2022, 7(4): 427-436. doi: 10.19606/j.cnki.jmst.2022.04.004

基于地质统计学反演的透明化矿山岩性建模参数研究及应用

doi: 10.19606/j.cnki.jmst.2022.04.004
基金项目: 

煤炭资源与安全开采国家重点实验室开放课题 SKLCRSM21KFA04

详细信息
    作者简介:

    陈柏平(1992—),男,湖南株洲人,博士研究生,主要从事煤田三维地震反演方面的研究工作。Tel:13124732118,E-mail:13124732118@163.com

    通讯作者:

    崔凡(1984—),男,安徽淮南人,教授,主要从事应用地球物理、煤田三维地震反演方面的研究工作。E-mail:cuifan@cumtb.edu.cn

  • 中图分类号: P631

Research and application of inversion parameters based on geological statistics inversion in transparent mines rock major modeling

  • 摘要: 为提供煤炭精准开采地质保障前期高分辨率的岩性地质建模基础数据,针对煤系地层的煤层厚度和存储条件,基于地质统计学反演理论建立楔形煤层的纵波阻抗模型,对获取的地震数据通过多组反演实验分析不同概率密度函数、横向变程参数对煤层厚度反演的影响,并进一步讨论了不同数量和位置的井约束条件下反演的效果,最后基于煤田地震数据进行了实际应用。结果表明,地质统计学反演参数对反演结果影响较大,合理的概率密度函数、横向变程和合理的约束井选取可以提高反演的准确性。实际应用表明地质统计学反演能够预测出1 m左右的薄煤层,反演的煤层厚度与测井数据结果误差范围为1.82 % ~12.24 %。研究结果对薄煤层厚度预测具有一定的可行性,可以为透明化矿山前期岩性地质建模提供有价值的建模数据。
  • 图  1  楔状煤层纵波阻抗模型示意图

    Figure  1.  Model diagram of p-wave impedance of wedge-shaped coal seam

    图  2  正演数据剖面

    Figure  2.  Forward data section

    图  3  地质统计学反演流程

    Figure  3.  Geostatistical inversion process

    图  4  伪井提取位置和纵波阻抗测井曲线(加噪)

    Figure  4.  Pseudo-well extraction location and p-wave impedance log (imnoised)

    图  5  不同反演参数条件下煤层厚度地质统计学反演平面图

    Figure  5.  Geostatistical inversion plane of coal seam thickness under different inversion parameters

    图  6  不同反演参数条件下煤层厚度地质统计学反演与实际模型厚度的相对误差平面图

    Figure  6.  The relative error of the thickness of coal seam thickness and actual model thickness under different inversion parameters

    图  7  不同井约束条件下煤层厚度地质统计学反演平面图

    Figure  7.  Coal seam thickness geostatistical inversion floor plan under different well constraints

    图  8  不同井约束条件下煤层厚度地质统计学反演与实际模型厚度相对误差平面图

    Figure  8.  The thickness of coal seam thickness geostatistical inversion and actual model thickness relative error plan for different well constraints

    图  9  研究区范围及三维地震数据

    Figure  9.  Research area range and three-dimensional seismic data

    图  10  测井岩性和纵波阻抗曲线

    Figure  10.  Logging lithology and p-wave impedance curves

    图  11  地质统计学反演概率密度函数拟合结果

    Figure  11.  Fitting results of geostatistical inversion probability density function

    图  12  2号煤地质统计学反演的厚度平面图

    Figure  12.  Thickness plane of no.2 coal from geostatistical inversion

    图  13  地质统计学反演与测井处的煤层厚度对比剖面

    Figure  13.  Coal seam thickness contrast profile at geostatistical inversion and logging

    图  14  基于地质统计学反演岩性结果建立的三维地质岩性模型

    Figure  14.  A 3d geological lithology model based on geostatistical inversion

    表  1  模型各岩性的密度、纵波速度参数

    Table  1.   Parameter table of density and p-wave velocity of each rock in the model

    岩性 密度/
    (g·cm-3)
    纵波速度/
    (m·s-1)
    纵波阻抗/
    (kg·m-2·s-1)
    砂岩 2.6 3 500 9 100
    泥岩 2.0 3 000 6 000
    1.4 2 500 3 500
    下载: 导出CSV

    表  2  地质统计学反演参数

    Table  2.   Geostatistical inversion parameter

    实验序号 概率密度函数 变程
    均值ε/(kg·m-2·s-1) 方差σ2 垂向变程/ms 横向变程H/m
    1 3 000 100 000 0.025 1 000
    2 3 000 400 000 0.025 1 000
    3 3 500 100 000 0.025 1 000
    4 3 500 400 000 0.025 1 000
    5 4 000 100 000 0.025 1 000
    6 4 000 400 000 0.025 1 000
    7 3 500 100 000 0.025 200
    8 3 500 100 000 0.025 600
    9 3 500 100 000 0.025 1 200
    下载: 导出CSV

    表  3  不同井约束条件反演参数

    Table  3.   Parameter of different well constraint conditions inversion

    实验序号 约束井数量/个 约束井位置
    1 9 1~9
    2 6 1、3、4、6、7、9
    3 6 1、2、4、5、7、8
    4 6 1、2、3、7、8、9
    5 6 1、2、3、7、8、9
    6 3 1、2、3
    7 3 7、8、9
    8 3 1、4、7
    9 3 1、5、9
    下载: 导出CSV

    表  4  反演参数取值

    Table  4.   Value of inversion parameters

    参数类型 泥岩 砂岩
    岩相占比/% 16 61 23
    概率密度函数均值/
    (kg·m-2·s-1)
    3.8×109 9.8×109 12.2×109
    概率密度函数方差 1.0×106 1.8×106 2.1×106
    下载: 导出CSV

    表  5  地质统计学反演煤层厚度井点处相对误差分析

    Table  5.   Analysis of relative error at well point in geostatistical inversion of coal seam thickness

    井编号 反演厚度/m 测井实际厚度/m 相对误差绝对值/%
    01 1.41 1.51 6.62
    02 2.12 2.08 1.92
    03 2.16 2.2 1.82
    04 1.10 0.98 12.24
    05 1.40 1.24 12.90
    下载: 导出CSV
  • [1] 袁亮. 我国煤炭工业高质量发展面临的挑战与对策[J]. 中国煤炭, 2020, 46(1): 6-12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME202001003.htm

    Yuan Liang. Challenges and countermeasures for high quality development of China's coal industry[J]. China Coal, 2020, 46(1): 6-12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME202001003.htm
    [2] 杨洋, 张文博, 张建敏, 等. 基于Citespace文献计量工具的数字矿山与矿山安全文献综述[J]. 矿业科学学报, 2021, 6(1): 124-138. doi: 10.19606/j.cnki.jmst.2021.01.014

    Yang Yang, Zhang Wenbo, Zhang Jianmin, et al. A survey of digital mine and mine safety management based on Citespace[J]. Journal of Mining Science and Technology, 2021, 6(1): 124-138. doi: 10.19606/j.cnki.jmst.2021.01.014
    [3] 袁亮. 煤炭精准开采科学构想[J]. 煤炭学报, 2017, 42(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701001.htm

    Yuan Liang. Scientific conception of precision coal mining[J]. Journal of China Coal Society, 2017, 42(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701001.htm
    [4] 袁亮. 面向煤炭精准开采的物联网架构及关键技术[J]. 工矿自动化, 2017, 43(10): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-MKZD201710001.htm

    Yuan Liang. Framework and key technologies of Internet of things for precision coal mining[J]. Industry and Mine Automation, 2017, 43(10): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-MKZD201710001.htm
    [5] 毛善君, 崔建军, 令狐建设, 等. 透明化矿山管控平台的设计与关键技术[J]. 煤炭学报, 2018, 43(12): 3539-3548. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201812035.htm

    Mao Shanjun, Cui Jianjun, Linghu Jianshe, et al. System design and key technology of transparent mine management and control platform[J]. Journal of China Coal Society, 2018, 43(12): 3539-3548. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201812035.htm
    [6] 袁亮, 张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报, 2019, 44(8): 2277-2284. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908002.htm

    Yuan Liang, Zhang Pingsong. Development status and prospect of geological guarantee technology for precise coal mining[J]. Journal of China Coal Society, 2019, 44(8): 2277-2284. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908002.htm
    [7] 袁亮, 张平松. 煤炭精准开采透明地质条件的重构与思考[J]. 煤炭学报, 2020, 45(7): 2346-2356. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202007003.htm

    Yuan Liang, Zhang Pingsong. Framework and thinking of transparent geological conditions for precise mining of coal[J]. Journal of China Coal Society, 2020, 45(7): 2346-2356. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202007003.htm
    [8] 王国法, 任世华, 庞义辉, 等. 煤炭工业"十三五"发展成效与"双碳"目标实施路径[J]. 煤炭科学技术, 2021, 49(9): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202109001.htm

    Wang Guofa, Ren Shihua, Pang Yihui, et al. Development achievements of China's coal industry during the 13th Five-Year Plan period and implementation path of "dual carbon" target[J]. Coal Science and Technology, 2021, 49(9): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202109001.htm
    [9] 程建远, 朱梦博, 王云宏, 等. 煤炭智能精准开采工作面地质模型梯级构建及其关键技术[J]. 煤炭学报, 2019, 44(8): 2285-2295. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908003.htm

    Cheng Jianyuan, Zhu Mengbo, Wang Yunhong, et al. Cascade construction of geological model of longwall panel for intelligent precision coal mining and its key technology[J]. Journal of China Coal Society, 2019, 44(8): 2285-2295. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908003.htm
    [10] 卢新明, 阚淑婷. 煤炭精准开采地质保障与透明地质云计算技术[J]. 煤炭学报, 2019, 44(8): 2296-2305. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908004.htm

    Lu Xinming, Kan Shuting. Geological guarantee and transparent geological cloud computing technology of precision coal mining[J]. Journal of China Coal Society, 2019, 44(8): 2296-2305. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908004.htm
    [11] 李梅, 姜展, 姜龙飞, 等. 三维可视化技术在智慧矿山领域的研究进展[J]. 煤炭科学技术, 2021, 49(2): 153-162. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202102019.htm

    Li Mei, Jiang Zhan, Jiang Longfei, et al. Research progress on 3D visualization technology for intelligent mine[J]. Coal Science and Technology, 2021, 49(2): 153-162. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202102019.htm
    [12] 陈博, 汤达祯, 张玉攀, 等. 韩城矿区H3井组煤体结构测井反演及三维地质建模[J]. 煤炭科学技术, 2019, 47(7): 88-94. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201907010.htm

    Chen Bo, Tang Dazhen, Zhang Yupan, et al. Logging inversion and three-dimensional geological modeling of coal structure in Hancheng H3 well group[J]. Coal Science and Technology, 2019, 47(7): 88-94. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201907010.htm
    [13] 吕杰堂, 张铭, 淮银超, 等. 煤储层测井分析和精细地质建模技术: 以澳大利亚Surat盆地煤层气区为例[J]. 煤炭学报, 2020, 45(5): 1824-1834. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005028.htm

    Lü Jietang, Zhang Ming, Huai Yinchao, et al. CBM reservoir log and fine geo-model analysis techniques: Taking CBM in Surat basin as an example[J]. Journal of China Coal Society, 2020, 45(5): 1824-1834. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005028.htm
    [14] 胡勇, 于兴河, 李胜利, 等. 应用地震正反演技术提高地质建模精度[J]. 石油勘探与开发, 2014, 41(2): 190-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201402009.htm

    Hu Yong, Yu Xinghe, Li Shengli, et al. Improving the accuracy of geological model by using seismic forward and inversion techniques[J]. Petroleum Exploration and Development, 2014, 41(2): 190-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201402009.htm
    [15] 韩冰, 袁颖, 张江伟. 地震波阻抗反演与测井联合的三维建模方法: 以B区为例[J]. 中国科技论文, 2018, 13(15): 1728-1735. doi: 10.3969/j.issn.2095-2783.2018.15.007

    Han Bing, Yuan Ying, Zhang Jiangwei. Three-dimensional modeling method of seismic impedance inversion and logging joint[J]. China Science Paper, 2018, 13(15): 1728-1735. doi: 10.3969/j.issn.2095-2783.2018.15.007
    [16] 孙月成, 李永飞, 孙守亮. 高精度三维地质建模新方法与关键技术研究[J]. 煤炭科学技术, 2019, 47(9): 241-248. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201909031.htm

    Sun Yuecheng, Li Yongfei, Sun Shouliang. Research on key technologies and new method of high precision 3D geological modeling[J]. Coal Science and Technology, 2019, 47(9): 241-248. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201909031.htm
    [17] 袁亮. 深部采动响应与灾害防控研究进展[J]. 煤炭学报, 2021, 46(3): 716-725. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202103003.htm

    Yuan Liang. Research progress of mining response and disaster prevention and control in deep coal mines[J]. Journal of China Coal Society, 2021, 46(3): 716-725. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202103003.htm
    [18] Azevedo L, Demyanov V. Multiscale uncertainty assessment in geostatistical seismic inversion[J]. GEOPHYSICS, 2019, 84(3): 355-369. doi: 10.1190/geo2018-0329.1
    [19] Azevedo L, Huang X H, Pinheiro L M, et al. Geostatistical inversion of seismic oceanography data for ocean salinity and temperature models[J]. Mathematical Geosciences, 2018, 50(4): 477-489. doi: 10.1007/s11004-017-9722-x
    [20] Jun H, Cho Y, Noh J. Trans-dimensional Markov chain Monte Carlo inversion of sound speed and temperature: Application to Yellow Sea multichannel seismic data[J]. Journal of Marine Systems, 2019, 197: 103180. doi: 10.1016/j.jmarsys.2019.05.006
    [21] Krumbein W C, Dacey M F. Markov chains and embedded Markov chains in geology[J]. Journal of the International Association for Mathematical Geology, 1969, 1(1): 79-96. doi: 10.1007/BF02047072
    [22] Larsen A L, Ulvmoen M, Omre H, et al. Bayesian lithology/fluid prediction and simulation on the basis of a Markov-chain prior model[J]. GEOPHYSICS, 2006, 71(5): 69-78.
    [23] 王朋岩, 李耀华, 赵荣. 叠后MCMC法岩性反演算法研究[J]. 地球物理学进展, 2015, 30(4): 1918-1925. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201504053.htm

    Wang Pengyan, Li Yaohua, Zhao Rong. Algorithm research of post-stack MCMC lithology inversion method[J]. Progress in Geophysics, 2015, 30(4): 1918-1925. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201504053.htm
    [24] Liu X C, Lu Y B, Lu Y C, et al. The application of geostatistical inversion in shale lithofacies prediction: a case study of the Lower Silurian Longmaxi marine shale in Fuling area in the southeast Sichuan Basin, China[J]. Marine Geophysical Research, 2018, 39(3): 421-439. doi: 10.1007/s11001-017-9317-4
    [25] Sondergeld C H. Quantitative seismic interpretation: applying rock physics tools to reduce interpretation risk[J]. Eos, Transactions American Geophysical Union, 2005, 86(40): 369.
    [26] Buland A, Omre H. Bayesian linearized AVO inversion[J]. GEOPHYSICS, 2003, 68(1): 185-198. doi: 10.1190/1.1543206
    [27] Zhang W L, Sun Z D, Zhao F, et al. Integrated geostatistical seismic inversion to predict a thin sandstone reservoir under fan delta sedimentary environment: A case study in the Junggar Basin[J]. Journal of Seismic Exploration, 2014, 23(2): 177-199.
    [28] 吕金龙. 岩性波阻抗正演模拟差异方法在储层预测中的应用[J]. 大庆石油地质与开发, 2016, 35(4): 132-136. doi: 10.3969/J.ISSN.1000-3754.2016.04.026

    Lü Jinlong. Application of lithological wave-impedance forward modeling differential method for the reservoir prediction[J]. Petroleum Geology & Oilfield Development in Daqing, 2016, 35(4): 132-136. doi: 10.3969/J.ISSN.1000-3754.2016.04.026
    [29] Bosch M, Cara L, Rodrigues J, et al. A Monte Carlo approach to the joint estimation of reservoir and elastic parameters from seismic amplitudes[J]. GEOPHYSICS, 2007, 72(6): 29-39. doi: 10.1190/1.2783766
    [30] 杨锴, 艾迪飞, 耿建华. 测井、井间地震与地面地震数据联合约束下的地质统计学随机建模方法研究[J]. 地球物理学报, 2012, 55(8): 2695-2704. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201208023.htm

    Yang Kai, Ai Difei, Geng Jianhua. A new geostatistical inversion and reservoir modeling technique constrained by well-log, cross hole and surface seismic data[J]. Chinese Journal of Geophysics, 2012, 55(8): 2695-2704. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201208023.htm
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  423
  • HTML全文浏览量:  119
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-04
  • 修回日期:  2021-12-25
  • 刊出日期:  2022-08-30

目录

    /

    返回文章
    返回