留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑自然电位的广义Δlog R模型及其在预测总有机碳含量的应用

缪欢 王延斌 麻振涛 国建英 张雨健

缪欢, 王延斌, 麻振涛, 国建英, 张雨健. 考虑自然电位的广义Δlog R模型及其在预测总有机碳含量的应用[J]. 矿业科学学报, 2022, 7(4): 417-426. doi: 10.19606/j.cnki.jmst.2022.04.003
引用本文: 缪欢, 王延斌, 麻振涛, 国建英, 张雨健. 考虑自然电位的广义Δlog R模型及其在预测总有机碳含量的应用[J]. 矿业科学学报, 2022, 7(4): 417-426. doi: 10.19606/j.cnki.jmst.2022.04.003
Miao Huan, Wang Yanbin, Ma Zhentao, Guo Jianying, Zhang Yujian. Generalized Δlog R model with spontaneous potential and its application in predicting total organ carbon content[J]. Journal of Mining Science and Technology, 2022, 7(4): 417-426. doi: 10.19606/j.cnki.jmst.2022.04.003
Citation: Miao Huan, Wang Yanbin, Ma Zhentao, Guo Jianying, Zhang Yujian. Generalized Δlog R model with spontaneous potential and its application in predicting total organ carbon content[J]. Journal of Mining Science and Technology, 2022, 7(4): 417-426. doi: 10.19606/j.cnki.jmst.2022.04.003

考虑自然电位的广义Δlog R模型及其在预测总有机碳含量的应用

doi: 10.19606/j.cnki.jmst.2022.04.003
基金项目: 

国家科技重大专项 2016ZX05007

国家科技重大专项 2016ZX05066001-002

中石油股份科技项目 2019B-0601

中石油股份科技项目 2019B-0602

详细信息
    作者简介:

    缪欢(1997—),男,甘肃庆阳人,硕士研究生,主要从事常规与非常规油气地质等方面的研究工作。E-mail:1627765379@qq.com

    通讯作者:

    王延斌(1958—),男,安徽寿县人,教授,博士生导师,主要从事常规与非常规油气地质等方面的研究工作。E-mail:wyb@cumtb.edu.cn

  • 中图分类号: P618

Generalized Δlog R model with spontaneous potential and its application in predicting total organ carbon content

  • 摘要: 为精准预测吐哈盆地中二叠统桃东沟群烃源岩总有机碳含量,基于研究区内多口钻井测井参数与有机质丰度之间的关系,对广义Δlog R模型进行拓展,提出了一种考虑自然电位广义Δlog R模型。研究发现:研究区内烃源岩与电阻率密度呈弱正相关,与自然电位、自然伽马和密度呈弱负相关,与中子相关性不太明显。通过与其他方法对比,优选出考虑自然电位的广义Δlog R模型的相关系数(R2)为0.804 2,平均误差率为15.58 %,是预测区内中二叠统桃东沟群烃源岩总有机碳含量的最佳方法。该成果将为研究区烃源岩测井评价等工作提供依据。
  • 图  1  吐哈盆地中二叠统地层沉积环境、构造分区及收集钻遇烃源岩钻井位置(修编自参考文献[22])

    Figure  1.  Sedimentary environment, structural division and drilling location of hydrocarbon source rocks encountered in the Middle Permian in Turpan Hami basin

    图  2  研究区内烃源岩TOC与常规测井参数的关系

    Figure  2.  Relationship between TOC of source rocks and conventional logging parameters in the study area

    图  3  传统Δlog R法与优化Δlog R法预测结果

    Figure  3.  Prediction results of traditional Δlog R method and optimized Δlog R method

    图  4  三种广义Δlog R法的模型预测结果分析

    Figure  4.  Model prediction results of three generalized Δlog R methods

    图  5  多元回归参数法预测结果分析

    Figure  5.  Prediction results of multiple regression parameter method

    图  6  南湖1井桃东沟群烃源岩TOC含量测井预测剖面

    Figure  6.  TOC logging prediction profile of source rocks of Taodonggou group in Nanhu 1 well

    表  1  研究区内钻井的ρDTRo值

    Table  1.   ρ, Ro and DT value of drilling wells in the study area

    井名 ρ/(Ω·m) DT/(μs·ft-1) Ro/%
    南湖1井 17.438 71.803 0.62
    艾参1井 54.054 75.832 0.68
    鲁南1井 2.166 72.894 0.51
    鲁东5井 13.830 73.817 0.52
    玉东1井 12.506 69.075 0.57
    下载: 导出CSV

    表  2  三种广义Δlog R法的模型、相关系数及误差率

    Table  2.   Models, correlation coefficients and error rates of three generalized Δlog R methods

    广义Δlog R 模型 相关系数 平均误差率/%
    参考文献[10] TOC=(-23.120 7lg GR+46.083 3)×Δlog R+1.388 2 0.278 9 27.38
    考虑DEN TOC=(-12.191 6lg GR+4.656 8DEN+13.584 7)×Δlog R+0.979 2 0.517 3 23.58
    考虑SP TOC=(-16.954 8lg GR+3.097 4DEN-0.103 3SP+30.228 8)×Δlog R+2.296 4 0.804 2 15.58
    下载: 导出CSV

    表  3  现有预测TOC含量的成熟方法对比

    Table  3.   Comparison and optimization of existing mature methods for predicting TOC

    方法 相关系数 平均误差率/%
    传统Δlog R 0.306 4 42.61
    优化Δlog R 0.426 6 39.21
    广义Δlog R 0.278 9 27.38
    考虑DEN的Δlog R 0.513 5 23.58
    考虑SP的Δlog R 0.804 2 15.58
    多元回归参数法 0.523 7 19.83
    下载: 导出CSV
  • [1] 顾礼敬, 徐守余, 苏劲, 等. 利用地震资料预测和评价烃源岩[J]. 天然气地球科学, 2011, 22(3): 554-560. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201103027.htm

    Gu Lijing, Xu Shouyu, Su Jin, et al. Muddy hydrocarbon source rock prediction and evaluation with seismic data[J]. Natural Gas Geoscience, 2011, 22(3): 554-560. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201103027.htm
    [2] Passey Q R, Creaney S, Kulla J B. A practical model for organic richness from porosity and resistivity logs[J]. AAPG Bulletin, 1990, 74(12): 1777-1794.
    [3] Huang Z H, Williamson M A. Artificial neural network modelling as an aid to source rock characterization[J]. Marine and Petroleum Geology, 1996, 13(2): 277-290. doi: 10.1016/0264-8172(95)00062-3
    [4] Carcione J M. A model for seismic velocity and attenuation in petroleum source rocks[J]. GEOPHYSICS, 2000, 65(4): 1080-1092. doi: 10.1190/1.1444801
    [5] 杜文凤, 王攀, 梁明星, 等. 煤系烃源岩有机碳含量测井响应特征与定量预测模型[J]. 煤炭学报, 2016, 41(4): 954-963. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201604022.htm

    Du Wenfeng, Wang Pan, Liang Mingxing, et al. Well logs response characteristics and quantitative prediction model of organic carbon content of hydrocarbon source rocks in coal-bearing strata measures[J]. Journal of China Coal Society, 2016, 41(4): 954-963. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201604022.htm
    [6] Atarita T C, Karlina D A, Nuratmaja S, et al. Predicting distribution of total organic carbon (TOC) and S2 with Δlog resistivity and acoustic impedance inversion on talangakar formation, cipunegara sub basin, west Java[J]. Procedia Engineering, 2017, 170: 390-397. doi: 10.1016/j.proeng.2017.03.063
    [7] 郭泽清, 孙平, 刘卫红. 利用Δlog R技术计算柴达木盆地三湖地区第四系有机碳[J]. 地球物理学进展, 2012, 27(2): 626-633. doi: 10.6038/j.issn.1004-2903.2012.02.027

    Guo Zeqing, Sun Ping, Liu Weihong. The carbon calculation by Δlog R technology in Sanhu area of Qaidam Basin[J]. Progress in Geophysics, 2012, 27(2): 626-633. doi: 10.6038/j.issn.1004-2903.2012.02.027
    [8] Liu L F, Shang X Q, Wang P, et al. Estimation on organic carbon content of source rocks by logging evaluation method as exemplified by those of the 4th and 3rd members of the Shahejie Formation in western sag of the Liaohe Oilfield[J]. Chinese Journal of Geochemistry, 2012, 31(4): 398-407. doi: 10.1007/s11631-012-0590-2
    [9] 刘超, 卢双舫, 薛海涛. 变系数Δlog R方法及其在泥页岩有机质评价中的应用[J]. 地球物理学进展, 2014, 29(1): 312-317. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201401044.htm

    Liu Chao, Lu Shuangfang, Xue Haitao. Variable-coefficient Δlog R model and its application in shale organic evaluation[J]. Progress in Geophysics, 2014, 29(1): 312-317. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201401044.htm
    [10] 胡慧婷, 苏瑞, 刘超, 等. 广义Δlog R技术预测陆相深层烃源岩有机碳含量方法及其应用[J]. 天然气地球科学, 2016, 27(1): 149-155. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601018.htm

    Hu Huiting, Su Rui, Liu Chao, et al. The method and application of using generalized-Δlog R technology to predict the organic carbon content of continental deep source rocks[J]. Natural Gas Geoscience, 2016, 27(1): 149-155. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601018.htm
    [11] 边雷博, 柳广弟, 孙明亮, 等. 优化的Δlog R技术及其在中深层烃源岩总有机碳含量预测中的应用[J]. 油气地质与采收率, 2018, 25(4): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201804007.htm

    Bian Leibo, Liu Guangdi, Sun Mingliang, et al. Improved Δlog R technique and its application to predicting total organic carbon of source rocks with middle and deep burial depth[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(4): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201804007.htm
    [12] 王祥, 马劲风, 张新涛, 等. 一种考虑密度因素的广义Δlog R法预测总有机碳含量: 以渤中凹陷西南部陆相深层烃源岩为例[J]. 地球物理学进展, 2020, 35(4): 1471-1480. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202004031.htm

    Wang Xiang, Ma Jinfeng, Zhang Xintao, et al. Prediction of total organic carbon content by a generalized Δlog R method considering density factors: illustrated by the example of deep continental source rocks in the southwestern part of the Bozhong sag[J]. Progress in Geophysics, 2020, 35(4): 1471-1480. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202004031.htm
    [13] Zhu L Q, Zhang C M, Zhang Z S, et al. An improved method for evaluating the TOC content of a shale formation using the dual-difference Δlog R method[J]. Marine and Petroleum Geology, 2019, 102: 800-816. doi: 10.1016/j.marpetgeo.2019.01.031
    [14] 杨占龙, 彭立才, 陈启林, 等. 吐哈盆地胜北洼陷岩性油气藏成藏条件与油气勘探方向[J]. 岩性油气藏, 2007, 19(1): 62-67. doi: 10.3969/j.issn.1673-8926.2007.01.011

    Yang Zhanlong, Peng Licai, Chen Qilin, et al. Petroleum accumulation condition analysis and lithologic reservoir exploration in Shengbei depression of Turpan-Harmy basin[J]. Lithologic Reservoirs, 2007, 19(1): 62-67. doi: 10.3969/j.issn.1673-8926.2007.01.011
    [15] 高岗, 梁浩, 李华明, 等. 吐哈盆地石炭系-下二叠统烃源岩地球化学特征[J]. 石油勘探与开发, 2009, 36(5): 583-592. doi: 10.3321/j.issn:1000-0747.2009.05.006

    Gao Gang, Liang Hao, Li Huaming, et al. Organic geochemistry of carboniferous and Lower Permian source rocks, Turpan-Hami basin, NW China[J]. Petroleum Exploration and Development, 2009, 36(5): 583-592. doi: 10.3321/j.issn:1000-0747.2009.05.006
    [16] 袁明生, 梁世君, 燕列灿, 等. 吐哈盆地油气地质与勘探实践[M]. 北京: 石油工业出版社, 2002.
    [17] 李金帅, 李贤庆, 王元, 等. 琼东南盆地深水区烃源岩地球化学特征和生烃潜力评价[J]. 矿业科学学报, 2021, 6(2): 166-175. doi: 10.19606/j.cnki.jmst.2021.02.004

    Li Jinshuai, Li Xianqing, Wang Yuan, et al. Geochemical characteristics and hydrocarbon generation potential evaluation of source rocks in the deepwater area of Qiongdongnan Basin[J]. Journal of Mining Science and Technology, 2021, 6(2): 166-175. doi: 10.19606/j.cnki.jmst.2021.02.004
    [18] Jiang S H, Li S Z, Somerville I D, et al. Carboniferous-Permian tectonic evolution and sedimentation of the Turpan-Hami Basin, NW China: implications for the closure of the Paleo-Asian Ocean[J]. Journal of Asian Earth Sciences, 2015, 113: 644-655. doi: 10.1016/j.jseaes.2015.05.012
    [19] 周文浩. 吐哈盆地吐鲁番坳陷西部二叠系生烃演化特征[J]. 断块油气田, 2017, 24(3): 316-319. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201703005.htm

    Zhou Wenhao. Characteristics of Permian hydrocarbon evolution in western area, Turpan Depression, Turpan-Hami Basin[J]. Fault-Block Oil & Gas Field, 2017, 24(3): 316-319. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201703005.htm
    [20] 韩祥磊. 吐哈盆地塔尔朗组沉积特征及烃源岩潜力分析[J]. 特种油气藏, 2018, 25(3): 18-22. doi: 10.3969/j.issn.1006-6535.2018.03.004

    Han Xianglei. Sedimentary pattern and source-rock potential of Taerlang formation in Turpan-Hami Basin[J]. Special Oil & Gas Reservoirs, 2018, 25(3): 18-22. doi: 10.3969/j.issn.1006-6535.2018.03.004
    [21] 郭林. 吐哈盆地哈密坳陷石炭-二叠系油气成藏要素[J]. 新疆石油地质, 2012, 33(1): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201201009.htm

    Guo Lin. Essential factors of carboniferous-Permian hydrocarbon accumulation in Hami depression of Tuha basin[J]. Xinjiang Petroleum Geology, 2012, 33(1): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201201009.htm
    [22] 缪欢, 王延斌, 国建英, 等. 吐哈盆地中二叠统桃东沟群烃源岩的测井评价[J/OL]. 石油物探: 1-12[2021-07-17]. http://kns.cnki.net/kcms/detail/32.1284.te.2021 0917.1203.002.html..

    Miao Huan, Wang Yanbin, GuoJianying, et al. Logging evaluation of Middle Permian taodonggou group source rocks in Turpan Hami Basin[J/OL]. Geophysical Prospecting for Petroleum: 1-12[2021-07-17]. http://kns.cnki.net/kcms/detail/32.1284.te.20210917.1203.002.html.
    [23] Miao H, Wang Y B, Zhao S H, et al. Geochemistry and organic petrology of middle Permian source rocks in Taibei sag, Turpan-Hami basin, China: implication for organic matter enrichment[J]. ACS Omega, 2021, 6(47): 31578-31594. doi: 10.1021/acsomega.1c04061
    [24] 袁东山, 王国斌, 汤泽宁, 等. 测井资料评价烃源岩方法及其进展[J]. 石油天然气学报, 2009, 31(4): 192-194, 203, 429. doi: 10.3969/j.issn.1000-9752.2009.04.046

    Yuan Dongshan, Wang Guobin, Tang Zening, et al. Methods for evaluating source rocks by well-logging data and its progress[J]. Journal of Oil and Gas Technology, 2009, 31(4): 192-194, 203, 429. doi: 10.3969/j.issn.1000-9752.2009.04.046
    [25] 王攀, 梁明星. 煤系烃源岩测井响应特征及有机碳评价方法[J]. 物探与化探, 2016, 40(1): 197-202. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201601035.htm

    Wang Pan, Liang Mingxing. The logging characteristics and evaluation methods of hydrocarbon source rock in coal measures[J]. Geophysical and Geochemical Exploration, 2016, 40(1): 197-202. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201601035.htm
    [26] 杨涛涛, 范国章, 吕福亮, 等. 烃源岩测井响应特征及识别评价方法[J]. 天然气地球科学, 2013, 24(2): 414-422. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201302029.htm

    Yang Taotao, Fan Guozhang, Lü Fuliang, et al. The logging features and identification methods of source rock[J]. Natural Gas Geoscience, 2013, 24(2): 414-422. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201302029.htm
    [27] 秦建强, 付德亮, 钱亚芳, 等. 烃源岩有机质丰度预测的地球物理研究进展[J]. 石油物探, 2018, 57(6): 803-812. doi: 10.3969/j.issn.1000-1441.2018.06.002

    Qin Jianqiang, Fu Deliang, Qian Yafang, et al. Progress of geophysical methods for the evaluation of TOC of source rock[J]. Geophysical Prospecting for Petroleum, 2018, 57(6): 803-812. doi: 10.3969/j.issn.1000-1441.2018.06.002
    [28] 张立鹏, 边瑞雪, 杨双彦, 等. 用测井资料识别烃源岩[J]. 测井技术, 2001, 25(2): 146-152, 161. doi: 10.3969/j.issn.1004-1338.2001.02.015

    Zhang Lipeng, Bian Ruixue, Yang Shuangyan, et al. Identifying hydrocarbon source rock with log data[J]. Well Logging Technology, 2001, 25(2): 146-152, 161. doi: 10.3969/j.issn.1004-1338.2001.02.015
    [29] 党春华. 自然电位测井原理与应用[J]. 煤炭技术, 2010, 29(8): 131-133. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201008063.htm

    Dang Chunhua. Principle and application of natural potential logging[J]. Coal Technology, 2010, 29(8): 131-133 https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201008063.htm
    [30] 陈孝平. 某地区烃源岩电性特征研究[J]. 石化技术, 2017, 24(8): 143. doi: 10.3969/j.issn.1006-0235.2017.08.115

    Chen Xiaoping. Research on electrical characteristics of hydrocarbon source rocks in a certain area[J]. Petrochemical Industry Technology, 2017, 24(8): 143. doi: 10.3969/j.issn.1006-0235.2017.08.115
    [31] 张小莉, 沈英. 吐哈盆地侏罗系煤系地层烃源岩的测井研究[J]. 测井技术, 1998, 22(3): 183-185, 194. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS803.009.htm

    Zhang Xiaoli, Shen Ying. Study on the source rock of Jurassic coal measure strata in Tulufan Hami Basin by logs[J]. Well Logging Technology, 1998, 22(3): 183-185, 194. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS803.009.htm
    [32] 罗帆, 徐国盛, 梁浩然, 等. 渤南青东凹陷烃源岩有机碳含量测井预测模型[J]. 成都理工大学学报: 自然科学版, 2020, 47(5): 604-611. doi: 10.3969/j.issn.1671-9727.2020.05.09

    Luo Fan, Xu Guosheng, Liang Haoran, et al. Logging prediction model of organic carbon content in source rock in the Qingdong Sag, Bonan Basin, China[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2020, 47(5): 604-611. doi: 10.3969/j.issn.1671-9727.2020.05.09
    [33] 宋延杰, 孙钦帅, 张晓军, 等. 基于测井信息的烃源岩定量评价方法[J]. 黑龙江科技大学学报, 2021, 31(2): 156-162. doi: 10.3969/j.issn.2095-7262.2021.02.005

    Song Yanjie, Sun Qinshuai, Zhang Xiaojun, et al. Logging-based quantitative evaluation method for source rocks information[J]. Journal of Heilongjiang University of Science and Technology, 2021, 31(2): 156-162. doi: 10.3969/j.issn.2095-7262.2021.02.005
    [34] 薛冰, 刘度, 罗洪浩, 等. 太行山东麓页岩储层地球化学参数测井计算方法研究[J]. 煤炭科学技术, 2020, 48(7): 325-333. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202007037.htm

    Xue Bing, Liu Du, Luo Honghao, et al. Study on well logging calculation method of geochemical parameters of shale reservoir in eastern foot of Taihang Mountain[J]. Coal Science and Technology, 2020, 48(7): 325-333. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202007037.htm
    [35] 林彧涵, 蒋有录, 苏圣民, 等. 二连盆地乌兰花凹陷下白垩统烃源岩有机碳含量预测[J]. 大庆石油地质与开发, 2021, 40(2): 143-152. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202102017.htm

    Lin Yuhan, Jiang Youlu, Su Shengmin, et al. W(TOC) prediction of Lower Cretaceous hydrocarbon source rock in Wulanhua Sag of Erlian Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(2): 143-152. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202102017.htm
    [36] 刘新颖, 邓宏文, 邸永香, 等. 海拉尔盆地乌尔逊凹陷南屯组优质烃源岩发育特征[J]. 石油实验地质, 2009, 31(1): 68-73. doi: 10.3969/j.issn.1001-6112.2009.01.013

    Liu Xinying, Deng Hongwen, Di Yongxiang, et al. High quality source rocks of Nantun formation in Wuerxun depression, the Hailaer Basin[J]. Petroleum Geology & Experiment, 2009, 31(1): 68-73. doi: 10.3969/j.issn.1001-6112.2009.01.013
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  471
  • HTML全文浏览量:  124
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-05
  • 修回日期:  2022-02-18
  • 刊出日期:  2022-08-30

目录

    /

    返回文章
    返回