留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

刮板输送机中板用新型耐磨钢Ti60与ANM450的腐蚀行为

滕子 朱瑾 陈华辉 马峰

滕子, 朱瑾, 陈华辉, 马峰. 刮板输送机中板用新型耐磨钢Ti60与ANM450的腐蚀行为[J]. 矿业科学学报, 2022, 7(3): 364-370. doi: 10.19606/j.cnki.jmst.2022.03.011
引用本文: 滕子, 朱瑾, 陈华辉, 马峰. 刮板输送机中板用新型耐磨钢Ti60与ANM450的腐蚀行为[J]. 矿业科学学报, 2022, 7(3): 364-370. doi: 10.19606/j.cnki.jmst.2022.03.011
Teng Zi, Zhu Jin, Chen Huahui, Ma Feng. Corrosion behavior of the new wear resistant steels Ti60 and ANM450 applied for middle plates of scraper conveyor[J]. Journal of Mining Science and Technology, 2022, 7(3): 364-370. doi: 10.19606/j.cnki.jmst.2022.03.011
Citation: Teng Zi, Zhu Jin, Chen Huahui, Ma Feng. Corrosion behavior of the new wear resistant steels Ti60 and ANM450 applied for middle plates of scraper conveyor[J]. Journal of Mining Science and Technology, 2022, 7(3): 364-370. doi: 10.19606/j.cnki.jmst.2022.03.011

刮板输送机中板用新型耐磨钢Ti60与ANM450的腐蚀行为

doi: 10.19606/j.cnki.jmst.2022.03.011
基金项目: 

国家重点研发计划 2017YFB0305104

详细信息
    作者简介:

    滕子(1996—),女,江苏东海人,硕士研究生,主要从事材料腐蚀与磨损研究工作。Tel:15650763719,E-mail:1529670870@qq.com

    通讯作者:

    陈华辉(1956—),女,河南舞阳人,教授,博士生导师,主要从事材料摩擦磨损及耐磨材料的教学与研究工作。Tel:13683656453,E-mail:chh@cumtb.edu.cn

  • 中图分类号: TG172.5

Corrosion behavior of the new wear resistant steels Ti60 and ANM450 applied for middle plates of scraper conveyor

  • 摘要: 以刮板输送机中板用新型耐磨钢Ti60与ANM450为研究对象,分析了微观组织和相结构,采用全浸失重法、电化学测试法及XRD分析研究了2种耐磨钢在去离子水、腐蚀离子溶液、成垢离子溶液、模拟矿井水溶液4种水质中的腐蚀行为。结果表明,腐蚀程度排序均为腐蚀离子溶液>模拟矿井水>成垢离子溶液>去离子水; 耐腐蚀性能Ti60>Hardox450>ANM450;腐蚀产物主要成分为Fe2O3α -FeO(OH)和Fe (OH)3,说明腐蚀反应主要是铁在溶液中的溶解。
  • 图  1  试验钢的显微组织

    Figure  1.  Microstructure of three tested steels

    图  2  试验钢的XRD图谱

    Figure  2.  XRD pattern of texted steels

    图  3  试验钢在腐蚀溶液中的宏观腐蚀形貌

    Figure  3.  The macroscopic corrosion morphology of the tested steels in corrosion solution

    图  4  试验钢在腐蚀溶液中的均匀腐蚀失重

    Figure  4.  Uniform corrosion weight loss of the tested steels in corrosion solutions

    图  5  试验钢在模拟矿井水中腐蚀产物XRD图谱

    Figure  5.  XRD pattern of corrosion products of the tested steels in simulated mine water

    图  6  试验钢在腐蚀溶液中的极化曲线

    Figure  6.  Polarization curves of the tested steels in corrosive solutions

    表  1  试验钢的化学成分

    Table  1.   Chemical compositions of three tested steels  %

    材料 C Ti Si Mn Ni Mo Cr S P
    Hardox450 0.23 0 0.50 1.60 0.25 0.25 1.20 0.010 0.025 0
    Ti60 0.31 0.61 0.15 0.56 0.61 0.31 0.82 0.006 0.004 0
    ANM450 0.30 0.49 1.09 3.02 1.50 0.27 0.14 0.001 0.009 5
    下载: 导出CSV

    表  2  4种腐蚀溶液的化学成分

    Table  2.   The chemical compositions of four kinds of corrosive solution

    成分 NaCl/(mg·L-1) Na2SO4/(mg·L-1) Mg(OH)2/(mg·L-1) CaCO3/(mg·L-1) pH
    去离子水 7.0
    腐蚀离子溶液 137.18 2 993.56 7.0
    成垢离子溶液 38.45 422.18 7.8
    模拟矿井水 137.18 2 993.56 38.45 422.18 7.8
    下载: 导出CSV

    表  3  试验钢在腐蚀溶液中的腐蚀参数

    Table  3.   Corrosion parameters of the tested steels in corrosive solutions

    腐蚀溶液 耐磨钢 Ecorr/V Rcorr/mmPY
    去离子水 Hardox450 -0.299 3 0.054 7
    Ti60 -0.274 0 0.042 2
    ANM450 -0.376 6 0.062 2
    腐蚀离子溶液 Hardox450 -0.440 1 2.684 5
    Ti60 -0.417 4 0.709 2
    ANM450 -0.497 9 2.889 3
    成垢离子溶液 Hardox450 -0.405 7 0.270 8
    Ti60 -0.305 4 0.036 4
    ANM450 -0.435 3 0.249 8
    模拟矿井水 Hardox450 -0.431 7 1.144 3
    Ti60 -0.423 9 1.092 5
    ANM450 -0.472 2 1.400 3
    下载: 导出CSV
  • [1] 煤矿安全规程编委会. 煤矿安全规程[M]. 北京: 煤炭工业出版社, 2016.
    [2] 史志远. 重载刮板输送机中部槽磨损行为研究[D]. 徐州: 中国矿业大学, 2017.
    [3] 李福固. 矿井运输与提升[M]. 3版. 徐州: 中国矿业大学出版社, 2014: 56-62.
    [4] 陈维健, 齐秀丽, 肖林京. 矿山运输与提升设备[M]. 徐州: 中国矿业大学出版社, 2007.
    [5] 张东升, 毛君, 刘占胜. 刮板输送机启动及制动动力学特性仿真与实验研究[J]. 煤炭学报, 2016, 41(2): 513-521. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201602034.htm

    Zhang Dongsheng, Mao Jun, Liu Zhansheng. Dynamics simulation and experiment on the starting and braking of scraper conveyor[J]. Journal of China Coal Society, 2016, 41(2): 513-521. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201602034.htm
    [6] Shi Z Y, Zhu Z C. Case study: Wear analysis of the middle plate of a heavy-load scraper conveyor chute under a range of operating conditions[J]. Wear, 2017, 380/381: 36-41. doi: 10.1016/j.wear.2017.03.005
    [7] 曹庆一, 任文颖, 陈思瑶, 等. 煤矿矿井水处理技术与利用现状[J]. 能源与环保, 2020, 42(3): 100-104. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZMT202003023.htm

    Cao Qingyi, Ren Wenying, Chen Siyao, et al. Coal mine water treatment technology and utilization status[J]. China Energy and Environmental Protection, 2020, 42(3): 100-104. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZMT202003023.htm
    [8] Waterhouse Carly, Tuff James, Usher Brent. Managed aquifer recharge and mine water management[J]. AusIMM Bulletin, 2017, (10): 76-79.
    [9] Banks D, Younger P L, Arnesen R T, et al. Mine-water chemistry: the good, the bad and the ugly[J]. Environmental Geology, 1997, 32(3): 157-174. doi: 10.1007/s002540050204
    [10] Dong Shuning, Zhang Wenzhong, Zhou Wanfang, et al. Discussion on some topical issues of water prevention and control in coal mines[J]. Mine Water and the Environment, 2021, 40(2): 547-552. doi: 10.1007/s10230-021-00773-3
    [11] Bi Y S, Wu J W, Zhai X R, et al. Discriminant analysis of mine water inrush sources with multi-aquifer based on multivariate statistical analysis[J]. Environmental Earth Sciences, 2021, 80(4): 1-17.
    [12] Gao L, Barrett D, Chen Y, et al. A systems model combining process-based simulation and multi-objective optimisation for strategic management of mine water[J]. Environmental Modelling & Software, 2014, 60: 250-264.
    [13] 谭娜. 中锰奥氏体钢矿井水工况的摩擦及腐蚀行为研究[D]. 徐州: 中国矿业大学, 2017.
    [14] 李沐山. 国外钢结硬质合金新进展[J]. 硬质合金, 1994, 11(2): 105-114. https://www.cnki.com.cn/Article/CJFDTOTAL-YZHJ199402010.htm

    Li Mushan. New development in foreing steel-bonded hard alloys[J]. Cemented Carbide, 1994, 11(2): 105-114. https://www.cnki.com.cn/Article/CJFDTOTAL-YZHJ199402010.htm
    [15] 李静. 工程机械用高强度NM450耐磨钢的研究[D]. 天津: 河北工业大学, 2012.
    [16] 田江漫. 河南永煤矿区选煤厂设备防腐蚀研究[D]. 徐州: 中国矿业大学, 2014.
    [17] 王振龙, 白飞飞. 选煤厂钢结构锈蚀原因分析[J]. 洁净煤技术, 2018, 24(S2): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-JJMS2018S2008.htm

    Wang Zhenlong, Bai Feifei. Analysis of the cause of steel structure corrosion in coal preparation plant[J]. Clean Coal Technology, 2018, 24(S2): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-JJMS2018S2008.htm
    [18] Zuo X B, Sun W, Li H, et al. Modeling of diffusion-reaction behavior of sulfate ion in concrete under sulfate environments[J]. Computers & Concrete, 2012, 10(1): 79-93.
    [19] Kodama T. The effect of sulfate ion on the passivity of iron in neutral buffer solution[J]. Corrosion Engineering, 1974, 23(1): 5-10. doi: 10.3323/jcorr1974.23.1_5
    [20] Haruna T, Domoto K, Shibata T. Effect of sulfate ion on corrosion of carbon steel in carbonate/bicarbonate solutions[J]. Zairyo-to-Kankyo, 2002, 51(8): 350-355. doi: 10.3323/jcorr1991.51.350
    [21] Soosaiprakasam I R, Veawab A. Corrosion and polarization behavior of carbon steel in MEA-based CO2 capture process[J]. International Journal of Greenhouse Gas Control, 2008, 2(4): 553-562. doi: 10.1016/j.ijggc.2008.02.009
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  377
  • HTML全文浏览量:  90
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-26
  • 修回日期:  2021-09-06
  • 刊出日期:  2022-06-20

目录

    /

    返回文章
    返回