留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高硫化氢巷道煤层注碱防治参数优选及现场应用

艾纯明 周沁园 夏季 王大鹏 穆效治 李琨

艾纯明, 周沁园, 夏季, 王大鹏, 穆效治, 李琨. 高硫化氢巷道煤层注碱防治参数优选及现场应用[J]. 矿业科学学报, 2022, 7(3): 313-321. doi: 10.19606/j.cnki.jmst.2022.03.006
引用本文: 艾纯明, 周沁园, 夏季, 王大鹏, 穆效治, 李琨. 高硫化氢巷道煤层注碱防治参数优选及现场应用[J]. 矿业科学学报, 2022, 7(3): 313-321. doi: 10.19606/j.cnki.jmst.2022.03.006
Ai Chunming, Zhou Qinyuan, Xia Ji, Wang Dapeng, Mu Xiaozhi, Li Kun. Parameter optimization of alkali injection prevention and field application in coal seam of high hydrogen sulfide roadway[J]. Journal of Mining Science and Technology, 2022, 7(3): 313-321. doi: 10.19606/j.cnki.jmst.2022.03.006
Citation: Ai Chunming, Zhou Qinyuan, Xia Ji, Wang Dapeng, Mu Xiaozhi, Li Kun. Parameter optimization of alkali injection prevention and field application in coal seam of high hydrogen sulfide roadway[J]. Journal of Mining Science and Technology, 2022, 7(3): 313-321. doi: 10.19606/j.cnki.jmst.2022.03.006

高硫化氢巷道煤层注碱防治参数优选及现场应用

doi: 10.19606/j.cnki.jmst.2022.03.006
基金项目: 

国家自然科学基金 51604138

辽宁省教育厅基础研究 LJ2020JCL002

详细信息
    作者简介:

    艾纯明(1987—),男,吉林梅河口人,博士,副教授,主要从事矿山安全、膏体充填等方面的研究工作。Tel:15042962066,E-mail:a3aizi@163.com

  • 中图分类号: TD862.1

Parameter optimization of alkali injection prevention and field application in coal seam of high hydrogen sulfide roadway

  • 摘要: 煤矿井下硫化氢超限不但伤害作业人员,也会损坏井下设备。山西某煤矿巷道内水中硫化氢浓度为228.19 mg/m3,空气中硫化氢浓度为45.64 mg/m3,属于高硫化氢煤矿,拟采用煤层钻孔注碱的方法治理硫化氢。为确定最佳注碱参数,本文采用COMSOL Multiphysics软件对煤层注碱治理硫化氢的过程及效果开展单孔和双孔注碱数值模拟。结果表明:距离钻孔中心越远,煤层所受到的注碱压力越小;注碱时间越长,碱液的扩散范围越大,碱液的扩散速度随扩散范围的变大而逐渐减小;双孔注碱距离过近时,串流现象导致相同时间下碱液扩散范围变小;得出模拟最优方案为:孔距10 m、压力8 MPa、注碱时间48 h。在13103工作面注碱后,进行了为期28 d的现场数据监测,测得回风流硫化氢浓度最高为9.13 mg/m3,回采中未超限,表明最佳注碱参数可指导煤层注碱工作。
  • 图  1  几何模型

    Figure  1.  Geometric model

    图  2  不同注碱压力下的碱液扩散云图

    Figure  2.  The lye diffusion cloud diagram under different alkali injection pressures

    图  3  不同压力下碱液浓度随钻孔距离变化曲线

    Figure  3.  The changing curves of lye concentration with drilling distance under different pressures

    图  4  不同压力下碱液扩散范围

    Figure  4.  Variation of lye diffusion range under different pressure

    图  5  碱液扩散范围示意图

    Figure  5.  Schematic diagram of lye diffusion range

    图  6  不同压力下注碱达到的最远距离

    Figure  6.  The farthest distance reached by alkali injection at different pressures

    图  7  压力为8 MPa不同孔距下的碱液扩散云图

    Figure  7.  The lye diffusion cloud diagram under different hole distances at 8 MPa

    图  8  8 MPa下不同孔距的碱液扩散范围

    Figure  8.  Diffusion range diagram of lye with different hole spacing at 8 MPa

    图  9  8 MPa时不同孔距下碱液浓度随钻孔距离变化图

    Figure  9.  Variation of lye concentration with drilling distance under different hole spacing and pressure at 8 MPa

    图  10  钻孔布置示意图

    Figure  10.  Schematic diagram of drilling layout

    图  11  注碱后煤层空气中硫化氢浓度

    Figure  11.  H2S concentration in coal seam air after alkali injection

    表  1  模型计算参数

    Table  1.   Model calculation parameters

    变量 物理含义 参数值
    μ 碱液动力黏度/(Pa·s) 1.005×10-3
    εp 煤体孔隙率/% 1.94
    ρ 碱溶液密度/(kg·m-3) l.0x103
    p 最初注碱压力/MPa 4/5/6/7/8
    k 煤体渗透率/mD 4.47×10-13
    cH2S 煤层中硫化氢摩尔浓度/(mol·m-3) 5.8
    cNa2CO3 碱液摩尔浓度/(mol·m-3) 58.1
    Di 反应物扩散系数/(m2·m-1) 1.0×10-13
    A 频度因子/(m3·mol·s-1) 1.0×10-6
    E 活化能/(J·mol-1) 7.2×104
    Rg 气体状态常数/J·(mol·K)-1 8.341
    p0 煤层气体压力/MPa 0.26
    T 温度/K 298.15
    下载: 导出CSV
  • [1] Jin S Q, Ding Y M, Yan A H, et al. H2S management in 15# coal seam of Fenghuangshan coal mines[J]. Procedia Engineering, 2011, 26: 1490-1494. doi: 10.1016/j.proeng.2011.11.2329
    [2] Mei Kaiyuan, Cheng Xiaowei, Gu Tao, et al. Effects of Fe and Al ions during hydrogen sulphide (H2S)-induced corrosion of tetracalcium aluminoferrite (C4AF) and tricalcium aluminate (C3A)[J]. Journal of Hazardous Materials, 2020: 123928.
    [3] 刘明举, 李国旗, Hani Mitri, 等. 煤矿硫化氢气体成因类型探讨[J]. 煤炭学报, 2011, 36(6): 978-983. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201106018.htm

    Liu Mingju, Li Guoqi, Hani Mitri, et al. Genesis modes discussion of H2S gas in coal mines[J]. Journal of China Coal Society, 2011, 36(6): 978-983. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201106018.htm
    [4] 魏俊杰, 邓奇根, 刘明举. 煤矿硫化氢的危害与防治[J]. 煤炭技术, 2014, 33(10): 269-272. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201410107.htm

    Wei Junjie, Deng Qigen, Liu Mingju. Hazards of hydrogen sulfide and control measures in coal mines[J]. Coal Technology, 2014, 33(10): 269-272. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201410107.htm
    [5] 崔中杰, 傅雪海, 刘文平, 等. 煤矿瓦斯中H2S的成因危害与防治[J]. 煤矿安全, 2006, 37(9): 45-47. doi: 10.3969/j.issn.1003-496X.2006.09.016

    Cui Zhongjie, Fu Xuehai, Liu Wenping, et al. hazards and prevention of H2S in coal mine gas[J]. Safety in Coal Mines, 2006, 37(9): 45-47. doi: 10.3969/j.issn.1003-496X.2006.09.016
    [6] 郭保国. 井筒过膏层硫化氢气体的防治[J]. 煤炭技术, 2003, 22(12): 57-58. doi: 10.3969/j.issn.1008-8725.2003.12.036

    Guo Baoguo. Prevention and control of Hydrogen Sulfide Gas in wellbore passing paste layer[J]. Coal Technology, 2003, 22(12): 57-58. doi: 10.3969/j.issn.1008-8725.2003.12.036
    [7] 林海, 王亚楠, 韦威, 等. 芬顿试剂处理煤矿矿井水中硫化氢技术[J]. 煤炭学报, 2012, 37(10): 1760-1764. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201210034.htm

    Lin Hai, Wang Yanan, Wei Wei, et al. Treatment of H2S in mine water using Fenton reagent[J]. Journal of China Coal Society, 2012, 37(10): 1760-1764. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201210034.htm
    [8] 张戈. 喷洒吸收液治理支架放煤涌出硫化氢实验研究[J]. 煤矿安全, 2016, 47(5): 57-60, 65. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201605015.htm

    Zhang Ge. Experimental study on controlling hydrogen sulphide gushing by spraying absorption liquid during coal caving support[J]. Safety in Coal Mines, 2016, 47(5): 57-60, 65. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201605015.htm
    [9] 汪伟, 贾宝山, 祁云. 风幕封闭的综掘面硫化氢治理技术研究与应用[J]. 中国安全科学学报, 2020, 30(1): 73-80. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202001013.htm

    Wang Wei, Jia Baoshan, Qi Yun. Research and application of hydrogen sulfide control technology with enclosed air curtain in fully-mechanized excavation face[J]. China Safety Science Journal, 2020, 30(1): 73-80. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202001013.htm
    [10] Daraee Maryam, Ghasemy Ebrahim, Rashidi Alimorad. Effective adsorption of hydrogen sulfide by intercalation of TiO2 and N-doped TiO2 in graphene oxide[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 1-10.
    [11] 高鑫浩. 乌东矿煤层硫化氢赋存规律及其防治技术研究[D]. 北京: 煤炭科学研究总院, 2020.
    [12] 赵义胜, 张崇智. 西曲矿9号煤H2S气体治理[J]. 煤炭科学技术, 2011, 39(S1): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ2011S1014.htm

    Zhao Yisheng, Zhang Chongzhi. H2S gas control of Xiqu mine No. 9 coal seam[J]. Coal Science and Technology, 2011, 39(S1): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ2011S1014.htm
    [13] 孙维吉, 袁欣鹏, 梁冰, 等. 煤层注NaHCO3溶液防治H2S方法及效果研究[J]. 中国安全科学学报, 2016, 26(1): 104-108. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201601019.htm

    Sun Weiji, Yuan Xinpeng, Liang Bing, et al. Injecting NaHCO3 solution into coal seam to control hydrogen sulfide: method and effects[J]. China Safety Science Journal, 2016, 26(1): 104-108. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201601019.htm
    [14] Zhang C, Wang X L, Liu H, et al. Development and application of modified lye for treating hydrogen sulphide in coal mine[J]. Fuel, 2020, 269: 117233. doi: 10.1016/j.fuel.2020.117233
    [15] 傅献彩, 沈文霞, 姚天扬. 物理化学[M]. 北京: 高等教育出版社, 2004.
    [16] 戚斐文. 小庄矿煤层注碱治理硫化氢涌出危害研究[D]. 西安: 西安科技大学, 2019.
    [17] 梁冰, 袁欣鹏, 孙维吉, 等. 煤层注碱治理硫化氢数值模拟与应用[J]. 中国矿业大学学报, 2017, 46(2): 244-249. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201702003.htm

    Liang Bing, Yuan Xinpeng, Sun Weiji, et al. Numerical simulation of lye injection into coal seams for governance of H2S and its field applications[J]. Journal of China University of Mining & Technology, 2017, 46(2): 244-249. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201702003.htm
    [18] 陈国灿. 带有裂缝的多孔介质流动问题的数值模拟[D]. 贵阳: 贵州大学, 2019.
    [19] Warren J E, Root P J. The behavior of naturally fractured reservoirs[J]. Society of Petroleum Engineers Journal, 1963, 3(3): 245-255. doi: 10.2118/426-PA
    [20] 刘军文, 施安峰, 王晓宏, 等. 多孔介质结构对渗流惯性效应的影响规律研究[J]. 力学季刊, 2019, 40(3): 447-457. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201903003.htm

    Liu Junwen, Shi Anfeng, Wang Xiaohong, et al. Study on influences of porous medium structure on inertial effect of seepage flow[J]. Chinese Quarterly of Mechanics, 2019, 40(3): 447-457 https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201903003.htm
    [21] 邵建立, 周斐, 薛彦超, 等. 岩体孔隙-裂隙双渗流数值模拟研究[J]. 煤矿安全, 2019, 50(9): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201909001.htm

    Shao Jianli, Zhou Fei, Xue Yanchao, et al. Study on numerical simulation of pore-fracture double seepage in rock mass[J]. Safety in Coal Mines, 2019, 50(9): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201909001.htm
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  439
  • HTML全文浏览量:  111
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-16
  • 修回日期:  2021-11-25
  • 刊出日期:  2022-06-20

目录

    /

    返回文章
    返回