留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雨汪井田超压含煤地层孔隙特征及孔隙体积模量演变规律

车玉燕 邹冠贵 殷裁云 曾葫 佘佳生

车玉燕, 邹冠贵, 殷裁云, 曾葫, 佘佳生. 雨汪井田超压含煤地层孔隙特征及孔隙体积模量演变规律[J]. 矿业科学学报, 2022, 7(3): 275-285. doi: 10.19606/j.cnki.jmst.2022.03.002
引用本文: 车玉燕, 邹冠贵, 殷裁云, 曾葫, 佘佳生. 雨汪井田超压含煤地层孔隙特征及孔隙体积模量演变规律[J]. 矿业科学学报, 2022, 7(3): 275-285. doi: 10.19606/j.cnki.jmst.2022.03.002
Che Yuyan, Zou Guangui, Yin Caiyun, Zeng Hu, She Jiasheng. The evolution law of pore characteristics and pore bulk modulus for overpressured coal-bearing formation in Yuwang Minefield[J]. Journal of Mining Science and Technology, 2022, 7(3): 275-285. doi: 10.19606/j.cnki.jmst.2022.03.002
Citation: Che Yuyan, Zou Guangui, Yin Caiyun, Zeng Hu, She Jiasheng. The evolution law of pore characteristics and pore bulk modulus for overpressured coal-bearing formation in Yuwang Minefield[J]. Journal of Mining Science and Technology, 2022, 7(3): 275-285. doi: 10.19606/j.cnki.jmst.2022.03.002

雨汪井田超压含煤地层孔隙特征及孔隙体积模量演变规律

doi: 10.19606/j.cnki.jmst.2022.03.002
基金项目: 

国家重点研发计划 2018YFC0807803

山西省科技重大专项 MQ2015-02

详细信息
    作者简介:

    车玉燕(1999—),女,安徽滁州人,硕士研究生,主要从事岩石物理学及地震解释等方面的研究工作。Tel:17810286891,E-mail:2431815974@qq.com

    通讯作者:

    邹冠贵(1981—),男,福建龙岩人,博士,副教授,主要从事岩石物理学及地震解释等方面的研究工作。E-mail:zgg@cumtb.edu.cn

  • 中图分类号: P313.2

The evolution law of pore characteristics and pore bulk modulus for overpressured coal-bearing formation in Yuwang Minefield

  • 摘要: 煤及煤层气开发中的异常高压现象会对资源开发带来危险,从而威胁到人员和财产的安全。本文选取云南雨汪煤矿的6个煤样,联合CT扫描技术和低温液氮吸附实验方法,分析测试得到超压煤样孔隙半径、孔喉半径、孔容-孔径微分分布的孔隙特征参数;基于Gassmann模型的机理,推导了不同围压条件下的干燥及饱和超压煤样孔隙体积模量。结果表明:雨汪煤矿超压地层煤样孔隙率偏大,可达到10 %,孔隙形状主要为球形和柱体,孔隙大小以介孔为主。干燥煤样的纵横波速度随围压的施加呈非线性增加。饱和煤样孔隙体积模量随围压的增加而变大,围压相同时,孔隙体积模量在水饱和度大于90 % 时迅速增加。
  • 图  1  压力与埋藏深度关系示意图

    Figure  1.  Schematic diagram of the relationship between pressure and burial depth

    图  2  研究区断层分布

    Figure  2.  Fault distribution in the study area

    图  3  孔隙空间分割结果

    Figure  3.  Pore space segmentation results

    图  4  孔容分布曲线

    Figure  4.  Pore volume distribution curve

    图  5  标准等温线类型(IUPAC)

    Figure  5.  Standard isotherm type (IUPAC)

    图  6  超压煤样等温吸脱附曲线

    Figure  6.  Isothermal adsorption and desorption curves of overpressured coal samples

    图  7  孔容-孔径微分分布曲线

    Figure  7.  Differential distribution curve of pore volume-pore diameter

    图  8  孔隙度仪

    Figure  8.  Porosimeter

    图  9  不同围压下煤样的纵横波速度曲线

    Figure  9.  P-wave and S-wave velocity curves of coal samples under different confining pressures

    图  10  干岩石孔隙体积模量随围压变化曲线

    Figure  10.  Variation curve of dry rock pore bulk modulus with confining pressure

    图  11  煤样饱和孔隙体积模量

    Figure  11.  Saturated pore bulk modulus of coal samples

    表  1  地层压力分类标准

    Table  1.   Formation pressure classification standard

    编号 压力分类 压力梯度/(kPa·m-1) 压力系数
    1 负压 < 9.6 < 0.96
    2 常压 9.6~15.0 0.96~1.50
    3 超压 15.0~17.3 1.50~1.73
    4 强超压 >17.3 >1.73
    下载: 导出CSV

    表  2  超压煤岩孔隙率测试结果

    Table  2.   Overpressure coal rock porosity test result data

    编号 S1-2 S1-3 S2-1 S3-1 S4-1 S4-2 平均
    孔隙率/% 10.55 16.11 7.27 9.18 10.09 10.22 10.57
    下载: 导出CSV

    表  3  组成超压煤岩矿物质量分数

    Table  3.   Composition of overpressure coal and rock mineral mass fraction  %

    煤样编号 铵云母 高岭石 锐钛矿 铁白云石
    S1-2 48.5 48.2 0.9 2.4
    S1-3 46.3 50.6 1.7 1.4
    S2-1 49.7 46.9 0.8 2.6
    S3-1 40.7 49.5 0.7 9.1
    S4-1 45.8 46.5 5.4 2.3
    S4-2 44.1 52.7 1.3 1.9
    均值 45.85 49.07 1.8 3.28
    下载: 导出CSV

    表  4  超压煤岩中的矿物密度和体积模量

    Table  4.   Density and bulk modulus of minerals in overpressure coal and rock

    组成矿物 铵云母 高岭石 锐钛矿 铁白云石
    体积模量/GPa 58.5 1.5 217.1 94.9
    密度/(g·cm-3) 2.7 1.6 4.3 2.9
    下载: 导出CSV

    表  5  组成超压煤岩矿物体积分数

    Table  5.   The volume fraction of minerals that make up the overpressure coal rock

    矿物成分 铵云母 高岭石 锐钛矿 铁白云石
    体积分数 0.342 0.627 0.008 0.023
    下载: 导出CSV

    表  6  煤样工业成分分析结果

    Table  6.   Industrial composition analysis results of coal samples  %

    样品编号 灰分 有机质
    S1-2 13.3 86.7
    S1-3 21.67 78.33
    S2-1 14.28 85.72
    S3-1 26.75 73.25
    S4-1 15.06 84.94
    S4-2 20.05 79.95
    均值 18.52 81.48
    下载: 导出CSV

    表  7  不同围压条件下Kdry

    Table  7.   Kdry value under different confining pressure conditions  GPa

    围压/MPa 0 5 10 15 20
    S1-2 3.539 3.897 4.092 4.281 4.342
    S2-1 3.863 4.178 4.379 4.556 4.631
    S4-1 3.731 3.984 4.223 4.371 4.446
    S4-2 3.597 3.931 4.119 4.311 4.401
    下载: 导出CSV

    表  8  不同围压条件下的干岩石孔隙体积模量Kφ

    Table  8.   Dry rock pore bulk modulus Kφ value under different confining pressure conditions  GPa

    围压/MPa 0 5 10 15 20
    S1-2 0.885 1.131 1.301 1.500 1.420
    S2-1 1.104 1.386 1.621 1.875 2.031
    S4-1 1.008 1.203 1.434 1.611 1.652
    S4-2 0.920 1.219 1.327 1.536 1.473
    下载: 导出CSV

    表  9  样品Ksat随含水饱和度的变化

    Table  9.   Change of Ksat of sample with water saturation  GPa

    样品编号 含水饱和度/% 围压/MPa 样品编号 含水饱和度/% 围压/MPa
    0 5 10 15 20 0 5 10 15 20
    S1-2 0 3.573 3.922 4.113 4.298 4.358 S4-1 0 3.760 4.007 4.241 4.387 4.460
    10 3.576 3.924 4.115 4.300 4.360 10 3.763 4.009 4.243 4.388 4.461
    20 3.581 3.928 4.118 4.302 4.362 20 3.767 4.013 4.245 4.391 4.463
    30 3.586 3.932 4.121 4.305 4.364 30 3.771 4.016 4.248 4.393 4.465
    40 3.594 3.938 4.126 4.309 4.368 40 3.778 4.022 4.252 4.397 4.469
    50 3.605 3.946 4.133 4.315 4.374 50 3.788 4.030 4.259 4.402 4.474
    60 3.620 3.957 4.142 4.322 4.381 60 3.800 4.040 4.267 4.409 4.480
    70 3.646 3.976 4.159 4.336 4.393 70 3.823 4.057 4.281 4.421 4.491
    80 3.696 4.014 4.190 4.362 4.418 80 3.866 4.092 4.309 4.445 4.513
    90 3.827 4.114 4.275 4.432 4.484 90 3.980 4.185 4.383 4.509 4.572
    100 5.398 5.429 5.450 5.472 5.480 100 5.414 5.438 5.465 5.484 5.494
    S2-1 0 3.889 4.197 4.395 4.568 4.642 S4-2 0 3.629 3.955 4.139 4.328 4.416
    10 3.891 4.199 4.396 4.570 4.643 10 3.632 3.958 4.141 4.329 4.417
    20 3.895 4.201 4.398 4.571 4.645 20 3.637 3.961 4.144 4.332 4.420
    30 3.899 4.204 4.401 4.573 4.646 30 3.641 3.965 4.147 4.334 4.422
    40 3.905 4.209 4.405 4.576 4.649 40 3.649 3.971 4.152 4.338 4.426
    50 3.914 4.215 4.410 4.581 4.653 50 3.660 3.979 4.159 4.344 4.431
    60 3.925 4.224 4.417 4.586 4.658 60 3.674 3.990 4.168 4.351 4.437
    70 3.945 4.239 4.429 4.596 4.667 70 3.699 4.008 4.184 4.364 4.449
    80 3.984 4.268 4.452 4.615 4.684 80 3.747 4.045 4.215 4.390 4.472
    90 4.087 4.346 4.516 4.667 4.732 90 3.873 4.142 4.297 4.458 4.534
    100 5.426 5.460 5.485 5.511 5.523 100 5.402 5.433 5.453 5.476 5.488
    下载: 导出CSV
  • [1] Ren J, Zhang G, Song Z, et al. Comprehensive fractal description of porosity of coal of different ranks[J]. The Scientific World Journal, 2014, 2014: 490318.
    [2] 何盼情. 马海东及周缘地区Pt-E3g下地层压力特征及超压成因[D]. 西安: 西安石油大学, 2021.
    [3] Chilingar G V, Serebryakov V A, Katz S A, et al. Chapter 5 Methods of estimating and predicting abnormal rormation pressures[M]. Amsterdam: Elsevier, Developments in Petroleum Science. 2002: 123-150.
    [4] Swarbrick R E, Osborne M J. The nature and diversity of pressure transition zones[J]. Petroleum Geoscience, 1996, 2(2): 111-116. doi: 10.1144/petgeo.2.2.111
    [5] 马启富. 超压盆地与油气分布[M]. 北京: 地质出版社, 2000.
    [6] 赵靖舟. 前陆盆地天然气成藏理论及应用[M]. 北京: 石油工业出版社, 2003.
    [7] 刘晓峰, 解习农. 储层超压流体系统的成因机制述评[J]. 地质科技情报, 2003, 22(3): 55-60. doi: 10.3969/j.issn.1000-7849.2003.03.011

    Liu Xiaofeng, Xie Xinong. Review on formation mechanism of the reservoir overpressure fluid system[J]. Geological Science and Technology Information, 2003, 22(3): 55-60. doi: 10.3969/j.issn.1000-7849.2003.03.011
    [8] 王鸿升. 异常高地层压力研究现状概述[J]. 油气地球物理, 2015, 13(4): 58-63.

    Wang Hongsheng. Summary of the research status of abnormally high formation pressure[J]. Oil & Gas Geophysics, 2015, 13(4): 58-63.
    [9] 刘宇坤, 何生, 何治亮, 等. 碳酸盐岩超压岩石物理模拟实验及超压预测理论模型[J]. 石油与天然气地质, 2019, 40(4): 716-724. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201904004.htm

    Liu Yukun, He Sheng, He Zhiliang, et al. The rock physics modeling experiment under overpressure and theoretical model for overpressure prediction in carbonate rocks[J]. Oil & Gas Geology, 2019, 40(4): 716-724. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201904004.htm
    [10] 王湘平. 随钻地层压力动态监测技术研究: 以东营凹陷为例[D]. 武汉: 中国地质大学, 2014.
    [11] 于浩. 多变量孔隙压力预测与不确定性分析方法及应用研究[D]. 武汉: 中国地质大学, 2020.
    [12] 林龙生, 王文文. 基于垂直地震剖面(VSP)的地层压力预测方法研究[J]. 中国石油和化工标准与质量, 2021, 41(11): 1-2. doi: 10.3969/j.issn.1673-4076.2021.11.001

    Lin Longsheng, Wang Wenwen. Research on formation presure pridiction method based on vertical seimic profile(VSP)[J]. China Petroleum and Chemical Standard and Quality, 2021, 41(11): 1-2. doi: 10.3969/j.issn.1673-4076.2021.11.001
    [13] 孟召平, 章朋, 田永东, 等. 围压下煤储层应力-应变、渗透性与声发射试验分析[J]. 煤炭学报, 2020, 45(7): 2544-2551.

    Meng Zhaoping, Zhang Peng, Tian Yongdong, et al. Experimental analysis of stress-strain, permeability and acoustic emission of coal reservoir under different confining pressures[J]. Journal of China Coal Society, 2020, 45(7): 2544-2551.
    [14] 李贤庆, 王哲, 郭曼, 等. 黔北地区下古生界页岩气储层孔隙结构特征[J]. 中国矿业大学学报, 2016, 45(6): 1172-1183. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201606013.htm

    Li Xianqing, Wang Zhe, Guo Man, et al. Pore structure characteristics of the Lower Paleozoic formation shale gas reservoir in northern Guizhou[J]. Journal of China University of Mining & Technology, 2016, 45(6): 1172-1183. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201606013.htm
    [15] 宋金星. 煤储层表面改性增产机理及技术研究[D]. 焦作: 河南理工大学, 2016.
    [16] 王博. 老厂雨旺区块煤储层特征及水力压裂优化设计[D]. 徐州: 中国矿业大学, 2018.
    [17] 刘树根, 焦堃, 张金川, 等. 深层页岩气储层孔隙特征研究进展: 以四川盆地下古生界海相页岩层系为例[J]. 天然气工业, 2021, 41(1): 29-41.

    Liu Shugen, Jiao Kun, Zhang Jinchuan, et al. Research progress on the pore characteristics of deep shale gas reservoirs: an example from the Lower Paleozoic marine shale in the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1): 29-41.
    [18] 王志战. 沉积盆地异常压力体系及其预监测: 以济阳坳陷为例[D]. 西安: 西北大学, 2006.
    [19] 鞠玮, 姜波, 秦勇, 等. 多煤层条件下现今地应力特征与煤层气开发[J]. 煤炭学报, 2020, 45(10): 3492-3500.

    Ju Wei, Jiang Bo, Qin Yong, et al. Characteristics of present-day in situ stress field under multi-seam condtions: Implications for coalbed mthane development[J]. Journal of China Coal Society, 2020, 45(10): 3492-3500.
    [20] 杜栩, 郑洪印, 焦秀琼. 异常压力与油气分布[J]. 地学前缘, 1995(4): 137-148. doi: 10.3321/j.issn:1005-2321.1995.04.002

    Du Xu, Zhen Hongyin, Jiao Xiuqiong. Distribution of abnormal pressure and hydrocarbon[J]. Earth Science Frontiers, 1995(4): 137-148. doi: 10.3321/j.issn:1005-2321.1995.04.002
    [21] 蒋秀明, 吴财芳, 张二超, 等. 老厂矿区雨汪区块地温-地压系统及其展布特征[J]. 河南理工大学学报: 自然科学版, 2020, 39(2): 32-37.

    Jiang Xiuming, Wu Caifang, Zhang Erchao, et al. Geotemperature-geopressure system and its distribution characteristics of Yuwang block in Laochang mining area[J]. Journal of Henan Polytechnic University: Natural Science, 2020, 39(2): 32-37.
    [22] 李仲东, 周文, 吴永平. 我国煤层气储层异常压力的成因分析[J]. 矿物岩石, 2004, 24(4): 87-92. doi: 10.3969/j.issn.1001-6872.2004.04.016

    Li Zhongdong, Zhou Wen, Wu Yongping. Genetic analysis on the abnormal pressure of the gas reservoirs in the coal layers in China[J]. Journal of Mineralogy and Petrology, 2004, 24(4): 87-92. doi: 10.3969/j.issn.1001-6872.2004.04.016
    [23] 杨永明, 鞠杨, 刘红彬, 等. 孔隙结构特征及其对岩石力学性能的影响[J]. 岩石力学与工程学报, 2009, 28(10): 2031-2038. doi: 10.3321/j.issn:1000-6915.2009.10.010

    Yang Yongming, Ju Yang, Liu Hongbin, et al. Influence of porous structure properties on mechanical performances of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2031-2038. doi: 10.3321/j.issn:1000-6915.2009.10.010
    [24] 董鹏宇. 赵庄井田3号煤孔隙特征研究[J]. 煤, 2021, 30(2): 1-5, 16.

    Dong Pengyu. Study on characteristics of the No. 3 coal pore in Zhaozhuang well-field system[J]. Coal, 2021, 30(2): 1-5, 16.
    [25] 刘建国. 沁水盆地东南部煤储层孔隙结构及其吸附性能研究[D]. 焦作: 河南理工大学, 2016.
    [26] 王士路, 张开仲, 杜联营, 等. 构造煤微观孔隙结构形态学特征及定量分析[J]. 西安科技大学学报, 2021, 41(5): 862-871.

    Wang Shilu, Zhang Kaizhong, Du Lianying, et al. Morphological characteristics of microscopic pore structure of tectonic coal and its quantitative analysis[J]. Journal of Xi'an University of Science and Technology, 2021, 41(5): 862-871.
    [27] 李鹏. 应用等温吸附曲线研究页岩孔隙结构特征[D]. 成都: 成都理工大学, 2016.
    [28] 武瑾, 王红岩, 拜文华, 等. 渝东南龙马溪组页岩储层特征及吸附影响因素分析[J]. 断块油气田, 2013, 20(6): 713-718. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201306008.htm

    Wu Jin, Wang Hongyan, Bai Wenhua, et al. Analysis on characteristics of Longmaxi Formation shale reservoir in southeast district of Chongqing and adsorption influence factor[J]. Fault-Block Oil & Gas Field, 2013, 20(6): 713-718. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201306008.htm
    [29] Mavko G, Mukerji T. Seismic pore space compressibility and Gassmann's relation[J]. Geophysics, 1995, 60(6): 1743-1749. doi: 10.1190/1.1443907
    [30] 王磊, 李克文, 赵楠, 等. 致密油储层孔隙度测定方法[J]. 油气地质与采收率, 2015, 22(4): 49-53. doi: 10.3969/j.issn.1009-9603.2015.04.009

    Wang Lei, Li Kewen, Zhao Nan, et al. Methods research of porosity determination for tight oil reservoir[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(4): 49-53. doi: 10.3969/j.issn.1009-9603.2015.04.009
    [31] 史燕红. 基于Gassmann方程的流体替换[D]. 成都: 成都理工大学, 2009.
    [32] 徐浩. 基于地质岩石矿物分析测试技术的探讨[J]. 低碳世界, 2016(33): 118-119. https://www.cnki.com.cn/Article/CJFDTOTAL-DTSJ201633074.htm

    Xu Hao. Discussion on the analysis and testing technology of geological rocks and minerals[J]. Low Carbon World, 2016(33): 118-119. https://www.cnki.com.cn/Article/CJFDTOTAL-DTSJ201633074.htm
    [33] Shitrit O, Hatzor Y H, Feinstein S, et al. Effect of kerogen on rock physics of immature organic-rich chalks[J]. Marine and Petroleum Geology, 2016, 73: 392-404. doi: 10.1016/j.marpetgeo.2016.03.023
    [34] 叶树刚. 瓦斯含量对煤层物性参数及AVO响应特征的影响研究[J]. 煤矿现代化, 2017(4): 80-82. doi: 10.3969/j.issn.1009-0797.2017.04.031

    Ye Shugang. The study of influence of gas content on physical property parameters and AVO response characteristics of coal seam[J]. Coal Mine Modernization, 2017(4): 80-82. doi: 10.3969/j.issn.1009-0797.2017.04.031
  • 加载中
图(11) / 表(9)
计量
  • 文章访问数:  630
  • HTML全文浏览量:  177
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-17
  • 修回日期:  2021-11-20
  • 刊出日期:  2022-06-20

目录

    /

    返回文章
    返回