留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

苯酚和喹啉降解菌Alcaligenes faecalis的降解特性及固定化应用

赵乾程 苏凯文 邱子梁 王庆宇 于彩虹

赵乾程, 苏凯文, 邱子梁, 王庆宇, 于彩虹. 苯酚和喹啉降解菌Alcaligenes faecalis的降解特性及固定化应用[J]. 矿业科学学报, 2022, 7(2): 247-256. doi: 10.19606/j.cnki.jmst.2022.02.013
引用本文: 赵乾程, 苏凯文, 邱子梁, 王庆宇, 于彩虹. 苯酚和喹啉降解菌Alcaligenes faecalis的降解特性及固定化应用[J]. 矿业科学学报, 2022, 7(2): 247-256. doi: 10.19606/j.cnki.jmst.2022.02.013
Zhao Qiancheng, Su Kaiwen, Qiu Ziliang, Wang Qingyu, Yu Caihong. Biodegradation characteristics of phenol and quinoline by Alcaligenes faecalis and its immobilization application[J]. Journal of Mining Science and Technology, 2022, 7(2): 247-256. doi: 10.19606/j.cnki.jmst.2022.02.013
Citation: Zhao Qiancheng, Su Kaiwen, Qiu Ziliang, Wang Qingyu, Yu Caihong. Biodegradation characteristics of phenol and quinoline by Alcaligenes faecalis and its immobilization application[J]. Journal of Mining Science and Technology, 2022, 7(2): 247-256. doi: 10.19606/j.cnki.jmst.2022.02.013

苯酚和喹啉降解菌Alcaligenes faecalis的降解特性及固定化应用

doi: 10.19606/j.cnki.jmst.2022.02.013
基金项目: 

国家自然科学基金 41977029

中央高校基本科研业务费专项资金 2009QH11

详细信息
    作者简介:

    赵乾程(1993—),男,河南许昌人,博士研究生,主要从事环境污染的微生物修复技术的研究工作。Tel:18611525269,E-mail:1104729565@qq.com

    通讯作者:

    于彩虹(1972—),女,山东龙口人,教授,博士生导师,主要从事环境领域的教学与研究工作。Tel:15120083898,E-mail:caihongyu@cumtb.edu.cn

  • 中图分类号: X172; X703.1

Biodegradation characteristics of phenol and quinoline by Alcaligenes faecalis and its immobilization application

  • 摘要: 苯酚和喹啉单基质降解菌在实际应用中局限性较大,筛选共基质条件下具有生物降解活性的菌株更具有实际价值。从焦化厂废水处理系统的污泥中经过驯化、分离,筛选出一株能同时降解苯酚和喹啉的菌株KD1,根据形态特征、生理生化和16S rDNA序列等分析,鉴定其为粪产碱杆菌(Alcaligenes faecalis)。降解条件优化表明,菌株KD1有较好的酸碱度适用性,在接菌量为10 %、初始pH值为7.0、温度35 ℃、振荡器转速150 r/min时,对苯酚和喹啉的降解效率最高;氮源能影响菌株KD1对苯酚的降解,而共基质下菌株KD1能协同降解苯酚和喹啉。菌株KD1能完全降解700 mg/L的苯酚和400 mg/L的喹啉,降解过程均呈零级反应特征,其在不同浓度的苯酚和喹啉中的生长符合Haldane底物抑制模型,抑制浓度分别为293 mg/L和229 mg/L。固定化研究表明,通过包埋和吸附制备的新型固定化载体能提高菌株KD1对苯酚和喹啉共基质的降解效率。
  • 图  1  菌株KD1的系统发育分析树

    Figure  1.  Phylogenetic tree of strain KD1

    图  2  不同条件对KD1降解苯酚和喹啉的影响

    Figure  2.  Effects of different factors on degradation of phenol and quinoline by KD1

    图  3  外加碳源氮源对KD1降解苯酚和喹啉单基质的影响

    Figure  3.  Effect of carbon and nitrogen on degradation of phenol (a)and quinoline (b)by KD1 respectively

    图  4  外加碳源氮源对KD1降解苯酚和喹啉双基质的影响

    Figure  4.  Effect of carbon and nitrogen sources on degradation of phenol and quinoline by KD1

    图  5  菌株KD1对苯酚的降解过程及动力学

    Figure  5.  Degradation process and kinetics of phenol by strain KD1

    图  6  KD1在不同初始浓度苯酚的比生长速率

    Figure  6.  Specific growth rate of strain KD1 in different concentrations of phenol

    图  7  菌株KD1对喹啉的降解过程及动力学

    Figure  7.  Degradation process and kinetics of quinoline by strain KD1

    图  8  KD1在不同浓度喹啉的比生长速率

    Figure  8.  Specific growth rate of KD1 at different concentrations of quinoline

    图  9  不同固定化载体对苯酚和喹啉降解的影响

    Figure  9.  Effect of different immobilized carriers on the degradation of phenol and quinoline

    图  10  花生壳活性炭与传统活性炭的性能比较

    Figure  10.  Performance comparison between peanut shell activated carbon and traditional activated carbon

    表  1  KD1的生理生化特性

    Table  1.   Physio-biochemical characteristics of KD1

    指标 革兰氏染色 水解淀粉酶 葡萄糖 过氧化氢酶 水解明胶试验 与氧气的关系
    结果 - - + + + +
    下载: 导出CSV
  • [1] Zhu H, Han Y X, Ma W C, et al. Removal of selected nitrogenous heterocyclic compounds in biologically pretreated coal gasification wastewater (BPCGW)using the catalytic ozonation process combined with the two-stage membrane bioreactor (MBR)[J]. Bioresource Technology, 2017, 245: 786-793. doi: 10.1016/j.biortech.2017.09.029
    [2] Shahryari S, Zahiri H S, Haghbeen K, et al. High phenol degradation capacity of a newly characterized Acinetobacter sp. SA01: Bacterial cell viability and membrane impairment in respect to the phenol toxicity[J]. Ecotoxicology and Environmental Safety, 2018, 164: 455-466. doi: 10.1016/j.ecoenv.2018.08.051
    [3] Basak B, Jeon B H, Kurade M B, et al. Biodegradation of high concentration phenol using sugarcane bagasse immobilized Candida tropicalis PHB5 in a packed-bed column reactor[J]. Ecotoxicology and Environmental Safety, 2019, 180: 317-325. doi: 10.1016/j.ecoenv.2019.05.020
    [4] Paisio C E, Talano M A, González P S, et al. Isolation and characterization of a Rhodococcus strain with phenol-degrading ability and its potential use for tannery effluent biotreatment[J]. Environmental Science and Pollution Research, 2012, 19(8): 3430-3439. doi: 10.1007/s11356-012-0870-8
    [5] Yi T, Shan Y, Huang B, et al. An efficient Chlorella sp. "Cupriavidus" necator microcosm for phenol degradation and its cooperation mechanism[J]. Science of the Total Environment, 2020, 743: 140775. doi: 10.1016/j.scitotenv.2020.140775
    [6] Li C M, Wu H Z, Wang Y X, et al. Enhancement of phenol biodegradation: Metabolic division of labor in co-culture of Stenotrophomonas sp. N5 and Advenella sp. B9[J]. Journal of Hazardous Materials, 2020, 400: 123214. doi: 10.1016/j.jhazmat.2020.123214
    [7] Jiang Y, Deng T, Shang Y, et al. Biodegradation of phenol by entrapped cell of Debaryomyces sp. with nano-Fe3O4 under hypersaline conditions[J]. International Biodeterioration & Biodegradation, 2017, 123: 37-45.
    [8] Qiao L, Wang J L. Biodegradation characteristics of quinoline by Pseudomonas putida[J]. Bioresource Technology, 2010, 101(19): 7683-7686. doi: 10.1016/j.biortech.2010.05.026
    [9] Zhang P, Jia R, Zhang Y, et al. Quinoline-degrading strain Pseudomonas aeruginosa KDQ4 isolated from coking activated sludge is capable of the simultaneous removal of phenol in a dual substrate system[J]. Journal of Environmental Science and Health, Part A, 2016, 51(13): 1139-1148. doi: 10.1080/10934529.2016.1206377
    [10] 徐伟超, 吴翠平, 张玉秀, 等. 喹啉降解菌Ochrobactrum sp. 的好氧降解特性及其在焦化废水中的生物强化作用[J]. 环境科学, 2017, 38(5): 2030-2035. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201705040.htm

    Xu Weichao, Wu Cuiping, Zhang Yuxiu, et al. Aerobic degradation characteristics of the quinoline-degrading strain Ochrobactrum sp. and its bioaugmentation in coking wastewater[J]. Environmental Science, 2017, 38(5): 2030-2035. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201705040.htm
    [11] Tuo B H, Yan J B, Fan B A, et al. Biodegradation characteristics and bioaugmentation potential of a novel quinoline-degrading strain of Bacillus sp. isolated from petroleum-contaminated soil[J]. Bioresource Technology, 2012, 107: 55-60. doi: 10.1016/j.biortech.2011.12.114
    [12] Wang J L, Quan X C, Han L P, et al. Microbial degradation of quinoline by immobilized cells of Burkholderia pickettii[J]. Water Research, 2002, 36(9): 2288-2296. doi: 10.1016/S0043-1354(01)00457-2
    [13] Kurade M B, Waghmode T R, Xiong J Q, et al. Decolorization of textile industry effluent using immobilized consortium cells in upflow fixed bed reactor[J]. Journal of Cleaner Production, 2019, 213: 884-891. doi: 10.1016/j.jclepro.2018.12.218
    [14] Ke Q, Zhang Y G, Wu X L, et al. Sustainable biodegradation of phenol by immobilized Bacillus sp. SAS19 with porous carbonaceous gels as carriers[J]. Journal of Environmental Management, 2018, 222: 185-189.
    [15] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001.
    [16] 国家环境保护总局. 水和废水检测分析方法[M]. 北京: 中国环境科学出版社, 2002.
    [17] 李亚新, 赵晨红. 紫外分光光度法测定焦化废水的主要污染物[J]. 中国给水排水, 2001, 17(1): 54-56. doi: 10.3321/j.issn:1000-4602.2001.01.016

    Li Yaxin, Zhao Chenhong. Determination of main pollutants in coking wastewater by UV spectrophotometry[J]. China Water & Wastewater, 2001, 17(1): 54-56. doi: 10.3321/j.issn:1000-4602.2001.01.016
    [18] Wang S J, Loh K C. Modeling the role of metabolic intermediates in kinetics of phenol biodegradation[J]. Enzyme and Microbial Technology, 1999, 25(3/4/5): 177-184. http://www.ingentaconnect.com/content/els/01410229/1999/00000025/00000003/art00060
    [19] 钟卓亚. 微波辅助化学活化制备活性炭的研究[D]. 长沙: 湖南大学, 2012.
    [20] 李静, 李文英. 喹啉降解菌筛选及其对焦化废水强化处理[J]. 环境科学, 2015, 36(4): 1385-1391. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201504039.htm

    Li Jing, Li Wenying. Screening of a Highly Efficient Quinoline-degrading Strain and Its Enhanced Biotreatment on Coking Waste Water[J]. Environmental Science, 2015, 36(4): 1385-1391. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201504039.htm
    [21] 张玉秀, 豆梦楠, 朱康兴, 等. 喹啉降解菌Rhodococcus sp. 的降解特性与生物强化作用[J]. 中国环境科学, 2017, 37(6): 2340-2346. doi: 10.3969/j.issn.1000-6923.2017.06.043

    Zhang Yuxiu, Dou Mengnan, Zhu Kangxing, et al. Bioaugmentation and characteristics of a quinoline-degrading strain Rhodococcus sp. [J]. China Environmental Science, 2017, 37(6): 2340-2346. doi: 10.3969/j.issn.1000-6923.2017.06.043
    [22] 王培明, 霍明昕, 朱遂一, 等. 低温喹啉降解菌的筛选及降解性能[J]. 环境工程学报, 2013, 7(1): 154-158. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201301029.htm

    Wang Peiming, Huo Mingxin, Zhu Suiyi, et al. Screening of quinoline-degradation bacteria and their biodegradation capability at low temperature[J]. Chinese Journal of Environmental Engineering, 2013, 7(1): 154-158. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201301029.htm
    [23] 陈晓华, 魏刚, 刘思远, 等. 高效降酚菌株Ochrobactrum sp. CH10生长动力学和苯酚降解特性的研究[J]. 环境科学, 2012, 33(11): 3956-3961. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201211039.htm

    Chen Xiaohua, Wei Gang, Liu Siyuan, et al. Growth kinetics and phenol degradation of highly efficient phenol-degrading Ochrobactrum sp. CH10[J]. Environmental Science, 2012, 33(11): 3956-3961. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201211039.htm
    [24] Wang Y, Chen H, Liu Y X, et al. An adsorption-release-biodegradation system for simultaneous biodegradation of phenol and ammonium in phenol-rich wastewater[J]. Bioresource Technology, 2016, 211: 711-719. doi: 10.1016/j.biortech.2016.03.149
    [25] Li Y, Li J, Wang C, et al. Growth kinetics and phenol biodegradation of psychrotrophic Pseudomonas putida LY1[J]. Bioresource Technology, 2010, 101(17): 6740-6744. doi: 10.1016/j.biortech.2010.03.083
    [26] 陈春, 李文英, 吴静文, 等. 焦化废水中苯酚降解菌筛选及其降解性能[J]. 环境科学, 2012, 33(5): 1652-1656. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201205039.htm

    Chen Chun, Li Wenying, Wu Jingwen, et al. Screening and characterization of phenol degrading bacteria for the coking wastewater treatment[J]. Environmental Science, 2012, 33(5): 1652-1656. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201205039.htm
    [27] 魏霞, 周俊利, 谢柳, 等. 苯酚降解菌CM-HZX1菌株的分离、鉴定及降解性能研究[J]. 环境科学学报, 2016, 36(9): 3193-3199. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201609010.htm

    Wei Xia, Zhou Junli, Xie Liu, et al. Isolation, identification and characterization of phenol-degrading strain CM-HZX1[J]. Acta Scientiae Circumstantiae, 2016, 36(9): 3193-3199. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201609010.htm
    [28] 卫晓博, 侯颖, 程豪杰, 等. 一种苯酚降解菌Pseudoxanthomonas sp. BF-6的分离鉴定及其降解特性、降解途径研究[J]. 生物技术通报, 2021, 37(11): 30-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJT202110009.htm

    Wei Xiaobo, Hou Ying, Cheng Haojie, et al. Isolation, Identification of Phenol-degrading Pseudoxanthomonas sp. BF-6 and Its Degradation Characterization and Pathway[J]. Biotechnology Bulletin, 2021, 37(11): 30-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJT202110009.htm
    [29] 周集体, 关晓燕, 曲媛媛, 等. 苯酚降解菌株GXY-1分离鉴定、降解及其粗酶特性研究[J]. 大连理工大学学报, 2010, 50(3): 340-345. https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG201003007.htm

    Zhou Jiti, Guan Xiaoyan, Qu Yuanyuan, et al. Research on isolation, identification of a phenol-degrading strain GXY-1 and characteristics of its degradation and crude enzyme[J]. Journal of Dalian University of Technology, 2010, 50(3): 340-345. https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG201003007.htm
    [30] Kilic N K. Enhancement of phenol biodegradation by Ochrobactrum sp. isolated from industrial wastewaters[J]. International Biodeterioration & Biodegradation, 2009, 63(6): 778-781. http://www.onacademic.com/detail/journal_1000034018543910_3ae1.html
    [31] Zhu S N, Liu D Q, Fan L, et al. Degradation of quinoline by Rhodococcus sp. QL2 isolated from activated sludge[J]. Journal of Hazardous Materials, 2008, 160(2/3): 289-294.
    [32] 唐春燕, 李巍, 叶秋霞, 等. 恶臭假单胞菌降解苯酚的动力学研究[J]. 环境工程学报, 2011, 5(10): 2364-2368. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201110039.htm

    Tang Chunyan, Li Wei, Ye Qiuxia, et al. Growth kinetics and phenol biodegradation of Pseudomonas putida LY1[J]. Chinese Journal of Environmental Engineering, 2011, 5(10): 2364-2368. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201110039.htm
    [33] Wang G Y, Wen J P, Yu G H, et al. Anaerobic biodegradation of phenol by Candida albicans PDY-07 in the presence of 4-chlorophenol[J]. World Journal of Microbiology and Biotechnology, 2008, 24(11): 2685-2691. doi: 10.1007/s11274-008-9797-0
    [34] 葛启隆, 王国英, 岳秀萍. 波茨坦短芽孢杆菌降解苯酚特性及动力学研究[J]. 生物技术通报, 2014(3): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJT201403020.htm

    Ge Qilong, Wang Guoying, Yue Xiuping. Phenol degradation by brevibacillus borstelensis and kinetic analysis[J]. Biotechnology Bulletin, 2014(3): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJT201403020.htm
    [35] 侯思宇. 喹啉降解菌的筛选及活化条件对喹啉降解速率的影响[D]. 西安: 西安建筑科技大学, 2017.
    [36] 朱顺妮, 刘冬启, 樊丽, 等. 喹啉降解菌Rhodococcus sp. QL2的分离鉴定及降解特性[J]. 环境科学, 2008, 29(2): 2488-2493. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200802036.htm

    Zhu Shunni, Liu Dongqi, Fan Li, et al. Isolation, identification and degradation characteristics of a quinoline-degrading bacterium Rhodococcus sp. QL2[J]. Environmental Science, 2008, 29(2): 2488-2493. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200802036.htm
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  371
  • HTML全文浏览量:  161
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-04
  • 修回日期:  2021-06-24
  • 刊出日期:  2022-04-20

目录

    /

    返回文章
    返回